DRAFT FINAL HOBSON FUEL FARM SITE ASSESSMENT REPORT CNC CHARLESTON NORTH CHARLESTON, SOUTH CAROLINA Volume I of I CTO-0144 **Contract Number: N62467-89-D-0318** Prepared for: Department of the Navy Southern Division Naval Facilities Engineering Command North Charleston, South Carolina Prepared by: EnSafe Inc. 5724 Summer Trees Drive Memphis, Tennessee 38134 (901) 372-7962 November 28, 2000 Revision: 0 Release of this document requires prior notification of the Commanding Officer of the Southern Division, Naval Facilities Engineering Command, North Charleston, South Carolina. #### Code 1849 Current Workload #### **Charleston Naval Base Complex** - Tetra Tech, NUS, is performing two assessments. The sites are AST M-82 in Zone C and AST 601 in Zone H. The fieldwork has been completed. AST 601 will need a CAP. AST M-82 will most likely be a Limited Assessment Report with recommendation for NFA. The final Assessment Report is due December 20th. - 2. EnSafe is performing an assessment on the Hobson Fuel Farm Area. Three Letter Reports (Area 19, Area 20 and Hobson Fuel Farm) are due ASAP. This work is high priority due to the property being desired by a private company. The assessment must be completed in order for SCDHEC to approve the company's plans. No ECD - 3. Underground Storage Tank 4 needs to be permanently closed. The award is scheduled for 2/15/2001. - 4. Follow-up repairs on sinkholes in Zone H from former UST sites that were not compacted properly are scheduled to be awarded 1/15/2001. - 5. J. A. Jones is submitting documents on a continuous basis to SCDHEC. The Navy is reviewing these documents simultaneously. These documents are Monitoring Plans, Corrective Action Plans, etc. - 6. J. A. Jones still is required to perform assessments in Zone K (Naval Annex). I have asked them for a schedule of events including deliverables and fieldwork. #### Charleston Naval Weapons Station 1. CH2Mhill is completing CTO 10, which includes closing out wells at Facility 350 and 869, and monthly monitoring at Facility 864 for six months. #### MCRD Parris Island - 1. Tetra **Tech** is performing Monitoring Natural Attenuation at Facility 850 (UST 000001) and the AVGAS pipeline (UST 000002). The reports are due at the end of January. - 2. Tetra Tech is performing an assessment at the Depot Gas Station and Facility 4022. Facility 4022 is a Standard Limited Assessment with recommendation for monitoring. I have commented on the draft report for Facility 4022 and I am waiting for the final. The assessment report for the Depot Gas Station is being | UST/AST | DESIGNATION | ZONE | Date sent to DHEC 8/31/2000 6/31/2000 6/31/2000 8/31/2000 8/31/2000 | | |---------|-----------------|------|---|--| | UST | 191NW | | 8/31/2000 | | | UST | 0 | 8 | 6/31/2000 | | | UST | \$-1 | 9 | 6/31/2000 | | | UST | 5-2 | 8 | 8/31/2000 | | | UST | 760 | c | B/31/2000 | | | UST | NH 1137-2 | C | 8/31/2000 | | | ust | Site 30 NH 46-5 | c | 8/31/2000 | | | UST | 242 | | 8/81/2000 | | | UST | 146 | a | 12/20/2000 | | | UST | 691 | н | | | | UST | NS 551A | н | 11/17/2000 me
10-00-00 | | | UST | NS 5518 | н | 11/17/2000 no
10-30-00 | | | UST | NS 25A | 1 | 12/1/2000 | | | AST | 177 | ŧ | 10/30/2000
submitted on 10/17/ | | | ust | Ste 29 NH 46 | C | 19/20/2005 | | | UST | 1175A | F | 15/5/5/000 | | | ust | 11758 | F | 12/20/2009 | | | UST | 1178C | F | 12/9/19/00 | | | UST | 13464-11 | Ŧ | 12/20/2009 | | | AST | 3009 | G | 12/20/2000 | | | UST | 123 | G | 12/20/2000 | | | UST | 648 | н | 12/20/2000 | | | UST | 6408 | н | 15/202000 | | ej . | UST/AST | DESIGNATION | ZONE | Date sent to
DHEC | |---------|-------------|--------|----------------------| | | NS-59A | н | 11/22/2000 | | UST | | | | | UST | NS 519 | H | 11/22/2000 | | UST | NS 200 | | 12/20/2000 | | | NS 25A | | 11/22/2000 | | UST | | | | | | | | | | SEE. | | | | | | Helita | | | | UST | 221-1 | - NO. | 10/30/2000 | | 081 | EX)-1 | - | TUSUEDUU | | AST | 801 | Н | 12/20/2000 | | UST | 64 | E | 12/1/2000 | | UST | 68 | E | 12/1/2000 | | UST | 241 | F | 12/1/2000 | | UST | 224 | G | 12/1/2000 | | UST | 953 | H | 12/1/2000 | | UST | 8 42 | 3 | 8/31/2000 | | UST | 9 | 8 | completed | | UST | G | В | completed | | UST | NHR2 | C | Co-inglisted | | UST | NH 82-1 | 0 | certificated | | AST | 59GA-00 | E | conscieted | | UST | 5904-2 | SO ESS | completed | | UST | 240 | F | completed | | UST | 1348 | F | completed | | AST | NS 71 | Н | course eard | | AST | NS 79-2 | н | consisted | | JST | 647 | н | completed | | UST | 850 | Н | personne | | JST | 654 | н | completed | | UST | 980 | Н | completed | | UST | 857-2 | В | completed | | UST | NS 79-1 | H | completed | | UST | 861-6 | 221 | completed | | AST | 2490 | 7 | completed | | UST/AST | DESIGNATION | ZONE | Date sent to
DHEC | |---------|-------------|------|----------------------| | ABI | MENA | N. | 10/16/0000 | | AST | 10.81 | X | 1819/4050 | | AST | 2015 | | 12/14/98/01 | |------|--------------------------------------|----------|-------------| | 187 | | A COLUMN | | | | ES LANS | | 10/150/04 | | 181 | EMB. | | tic adven- | | KFER | EMBAL 178 | . 9 | 10/19/2000 | | KFER | ACC 525 | 4 | 1015000 | | KFER | ACC 656 | H | | | KFER | 80G 800 | B | 12/15/2000 | | KTER | AOC 665 | | 10/15/2000 | | KEER | ADC STIMES
697, NS-9A
3-1, 4-1 | | 12/15/9000 | | Further Modeling | 4 | |-----------------------------------|------| | CAP-Intrensio | 12 | | CAP Active (J.V) | 9 | | CAP Active (BC) | - 25 | | Possible NFA/ mere
monitoring | 1 | | Not calorgorized | 2 | | Start Assesment from beginning | 6 | | Start Assesment
from DETe data | 6 | | NFA | 16 | | CAP Completed | | | Total amout of | 58 | **FAX** #### 935 Houston Northcutt Boulevard, Suite 113 Mt. Pleasant, South Carolina 29464 Phone (843) 884 0029 Fax (843) 856 0107 | To: Tony Hunt | From: Todd Haverkast | Thate: 126-00 | |----------------|----------------------|------------------| | Fax to Number: | Numbe | er of Pages: 7 | | Remarks: | • | | | | | | 13 23 Hobson Fuel Furm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 #### 2.0 PREVIOUS INVESTIGATIONS #### 2.1 ESE Assessment Environmental assessment of the HFF area began in 1986 with the initial site characterization performed by ESE, Inc. ESE sampled soil and shallow groundwater at the site and nearby surface water and sediment. ESE found contamination to a depth of eight feet below ground surface (bgs) over a 48,000 square-foot area where the former tanks 3900G and 3900H stood. Soil and groundwater samples were analyzed for TPH, volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). TPH concentrations in soil ranged from polycyclic aromatic hydrocarbons (PAHs). TPH concentrations in soil ranged from a 146 to 7,280 milligrams per kilogram (mg/kg); while groundwater TPH detections ranged from 341 to 130,000 micrograms per liter (\(\mu g/L\)). No VOCs were detected in soil or groundwater. Subsequent groundwater sampling by ESE identified PAHs, including some Risk-based Screening 11 Constituents (KEMRON, 1990). #### 2.2 KEMRON Assessment/Remedial Activities In 1990, KEMRON conducted further study of the HFF area to more closely determine the horizontal and vertical distribution of contamination in the vicinity of the former 3900G and 3900H. Soil analyses included TPH and VOCs, while groundwater samples were analyzed for TPH, VOCs and PAHs. The KEMRON study detected TPH and PAHs, and determined that the horizontal extent of contamination around 3900G and 3900H was smaller than the area originally identified by ESE. The vertical extent was also further refined. KEMRON identified impacted soil from two to ten feet bgs. Resampling of site monitoring wells by KEMRON revealed much lower TPH and PAH concentrations than was originally reported by ESE, indicating a lesser impact to groundwater than was previously observed. No VOCs were detected in this follow-on sampling. Did when From late 1991 to early 1992, after the demolition of tanks 3900G and 3900H and prior to the construction of newer tanks 3916 and 3917, a partially successful attempt at land farming was conducted by KEMRON. This effort was hampered by severe seasonal rainfall and was suspended when construction began on the new tanks (KEMRON, February 1992). Although limited soil 9 10 17 18 Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 removals were reportedly performed in the areas of these tanks, this was not documented in either of the KEMRON documents reviewed (KEMRON, 1990; KEMRON, 1992). After the ESE and KEMRON investigations were conducted, several investigations were performed on areas adjacent to the HFF area, or in areas subject to IM action. These subsequent investigations focused on areas of specific petroleum related contamination associated with the FDS, or to confirm the removal of contaminated media associated with IMS. #### 2.3 S&ME TPH Survey In May of 1992, S&ME, Inc. was retained by the Navy to conduct a soil TPH survey along a fuel supply line that parallels the south side of Hobson Avenue north of the HFF area. The purpose of the investigation was to determine if petroleum related contamination exists along the pipeline right-of-way. Soil samples for TPH analysis were collected at the soil-water interface, at approximately six-feet ft bgs. Two of four samples collected along the northeast and northwest sides of Building 98 revealed subsurface soil TPH concentrations of 690 and 1,000 mg/kg, respectively (TPH was not detected in the other two samples). S&ME's investigation report concluded that soil and groundwater were likely contaminated along this pipeline, and that appropriate abatement procedures should be followed during excavation and dewatering activities which were to accompany forthcoming repairs (S&ME, May 28, 1992). #### 2.4 NFESC SCAPS Study In
July of 1995, NFESC performed a site characterization within the AOC 626 (the Naval Supply Center Fuel Farm, including the HFF and surrounding area investigated under the FDS) area using a SCAPS. The objective of the NFESC's investigation was to define the extent of PAH contamination in the area outside the Fuel Farm proper. Confirmatory soil samples were also collected from depths coinciding with the suspected contamination areas. The SCAPS investigation, in conjunction with the confirmatory soil sampling, failed to reveal extensive petroleum contamination in soil (NFESC, April 1996). were any of the 25 locations in the HFF area of interest? 11 Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 2.5 Facility 148 IM Was this on In ? In August of 1996, SPORTENVDETCHASN performed an IM assessment and closure at 2 Facility 148. The tank had been emptied and cleaned prior to the IM, and contained no residual 3 fuel. Free product and petroleum contaminated soil were found throughout the excavation and demolition of Facility 148 Confirmatory samples were analyzed for benzene, toluene, 5 ethylbenzene and xylene (BTEX) constituents, and PAHs. The area most impacted was associated 6 with the piping to Building 98. The excavation was open until July 1997 when the tank pit was 7 backfilled with clean soil (SPORTENVDETCHASN, 1997). The FDS CAR 8 (EnSafe, September 10, 1998), identified this area as FDS Area 19, requiring additional 9 assessment due to the petroleum contamination observed during the Facility 148 IM activities. How does this this were was identified as Area 19 in relate to off forberint? 2.6 AOC 626 IM In December of 1996, the SPORTENVDETCHASN performed an IM at the southwest intersection of Hobson Avenue and Viaduct Road. The objective of this IM was to remove a portion of the 18-inch diameter abandoned fuel pipeline buried beneath the site (AOC 626), remove petroleum saturated soil found during the excavation, and install a free product recovery system, if required. Initial excavations during this removal action revealed heavily stained soil to five feet bgs, with free product leaching from the sides of the open excavation. A total of 229 linear feet of the 18-inch diameter fuel pipeline were removed from where the pipeline traversed beneath Viaduct Road. Approximately 450 cubic yards of petroleum contaminated soil were also removed during the IM. Confirmatory samples were collected from the bottom of the excavation pit and analyzed for TPH, BTEX, PAHs, and metals. A 200-foot, horizontal, perforated, polyvinyl 21 chloride (PVC) free product recovery system was installed, along with PVC vertical standpipes 22 for product recovery. Approximately 40,000 gallons of water mixed with oil was recovered from the this system (SPORTENVDETCHASN, 1997). The FDS (EnSafe, September 10, 1998), identified this area as FDS Area 20, requiring additional 25 assessment due to the residual petroleum contamination observed during the pipeline IM activities. g 10 12 Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 #### 2.7 Zone L Subzone G Investigation In 1997, EnSafe commenced the investigation of Zone L, to address possible releases from the 2 CNC railroads, and storm water and sanitary sewer systems. Zone L, Subzone G included some 3 sewer lines which traversed the HFF area. Twenty direct push technology (DPT) soil and 30 DPT 4 groundwater samples were collected for VOCs, metals, and cyanide. Fourteen hand-auger soil 5 borings advanced during the investigation and two monitoring wells installed at Subzone G were 6 analyzed for VOCs, semivolatile organic compounds (SVOCs), metals, cyanide, chlorinated 7 pesticides, and polychlorinated biphenyls (PCBs). #### 2.8 FDS Investigation In 1996, EnSafe commenced investigation of the CNC FDS. The FDS investigations, performed subsequent to the ESE and KEMRON studies, focused on areas of petroleum related contamination associated with specific releases from the FDS and areas of likely release. The FDS investigation performed by EnSafe attempted to identify system-wide problems associated with petroleum releases from previous operation of the CNC FDS. The FDS investigation encompassed all buried and above ground fuel pipelines within the CNC area, and storage tanks associated with this piping. The investigation covered areas both inside, adjacent to, and outside the HFF area. The phased investigation commenced with a DPT (Phase I) TPH soil survey along the various fuel pipelines throughout CNC to identify areas of aggregate petroleum contamination. These biased DPT screening samples were collected from areas most likely to have been impacted (i.e., surface where the pipelines and valves were at the surface and subsurface adjacent to buried pipelines). Areas with TPH results greater than 50 mg/kg diesel range organics (DRO) or $50 \mu g/kg$ gasoline range organics (GRO) were targeted for Phase II, constituent specific soil and groundwater sampling and designated as Areas 1-18. During Phase II, discrete samples were collected from these areas and analyzed for standard analytical parameters (VOCs, SVOCs, pesticides and PCBs, metals, and cyanide). 8 12 23 24 Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 Areas 19 and 20, adjacent to the HFF, were later added to this group of sites. DPT soil and groundwater sampling, and well installation and sampling, was performed at Areas 19 and 20 in 1999. war gerad ? The FDS CAR (EnSafe, September 10, 1998) found that Areas 8, 12, 13, 14, and 15 exhibited limited soil and groundwater contamination associated with the FDS. Intrinsic remediation was recommended for soil at Areas 8, 12, 13, and 14, along with monitoring of groundwater. No further action was recommended for soil or groundwater at Area 11 and 15. Areas 19 and 20 have not yet been submitted to SCDHEC, because the additional results are pending. Figures 2-1 and 2-2 on pages 23 and 24 present the analytical suites by soil and groundwater, respectively, for all EnSafe samples collected in and adjacent to the HFF area. Table 2.1 on page 32 presents the Phase I TPH analytical results of the screening samples collected during the FDS investigation in and adjacent to the HFF. Figures 2-3 and 2-4 on pages 25 and 26 present the Phase I TPH data for surface and subsurface soil, respectively. Phase II soil samples were collected from areas of elevated TPH. Phase II soil samples were analyzed for constituent specific analyses. Table 2.2 on page 34 presents the Phase II samples that were collected within and adjacent to the HFF area during the FDS investigation. Of the 18 areas found to require further evaluation under Phase II, Areas 8, 11, 12, 13, 14, and 15 are adjacent to the HFF area. The Phase II soil analytical results for these areas are presented in Table 2.3 on page 35. Areas of potential groundwater contamination were identified for investigation, based on the FDS Phase I/II soil investigation. Monitoring wells were installed so that groundwater samples could be collected from the saturated backfill material surrounding the pipeline or at a comparable depth. Table 2.4 on page 44 details the monitoring wells that were sampled in conjunction with the FDS areas adjacent to the HFF. The analytical data summary for these samples are presented in Table 2.5 on page 46. 15 Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 2.8.1 Area 8 Area 8, associated with FDS Phase I sample FDSSC04701, had TPH-GRO results of 19,000 μ g/kg, prompting subsequent Phase II soil and groundwater sampling (Table 2.1). Phase II sample FDSSC47A exhibited total napthalenes above the respective RBSL. All VOCs and metals at this boring were below appropriate soil screening standards (Table 2.3). where is this on Figure 32 No VOCs were detected in samples from the Area 8 monitoring wells. The groundwater RBSL for total PAHs was exceeded during the first, but not the second, sampling event at Area 8. No RBSLs for groundwater metals were exceeded at Area 8. No groundwater RBSL constituents. were exceeded in downgradient well FDS08D, which was installed later at the site (Table 2.5). this been done yet? Subsequent to the installation and sampling of FDS08D, it was recommended that two quarterly monitoring events of the Area 8 wells be conducted. If concentrations remain below groundwater RBSLs during this monitoring program, it was recommended that these results be used to support a no further action decision for soil and groundwater at Area 8 (EnSafe, June 30, 1999). 14 2.8.2 Area 11 The Phase I TPH-GRO sample results for soil boring FDSSC05101 was 42.75 μ g/kg, prompting subsequent Phase II soil and groundwater sampling within Area 11 (Table 2.1). The primary sample result was 77.6 μ g/kg TPH-GRO. This value is an average of the primary and duplicate sample collected at this location. No VOCs were detected in subsurface soil at Area 11. All RBSL SVOCs and metals detected at Area 11 were below their respective soil screening where were phase I samples contected? standards (Table 2.3). voce = metals detected but not identified No RBSL VOCs or metals were exceeded in groundwater samples from the Area 11 monitoring wells. No RBSL SVOCs were detected in groundwater at Area 11 (Table 2.5). 22 How many words sompled? RBCA 12 13 20. 21 Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 Because no groundwater RBSLs were exceeded in either of two sampling events at Area 11, the FDS CAR (EnSafe, September 10, 1998) recommended and SCDHEC concurred no further action for this area. #### 2.8.3 Areas 12, 13, and 14 The Phase I TPH-GRO sample results for soil borings FDSSC06501, FDSSC6601, and FDSSC6701 were 147 μ g/kg, 67 μ g/kg, and 106 μ g/kg, respectively, prompting subsequent Phase II soil and groundwater
sampling within Areas 12, 13, and 14 (Table 2.1). RBSL VOCs and metals were below their respective screening levels at Areas 12, 13, and 14. The RBSL for total naphthalenes was exceeded at FDCSC06601 and FDSSC06701 (Table 2.3). No RBSL VOCs were detected in groundwater samples from Areas 12, 13, and 14. RBSL SVOCs were below their respective screening levels at Area 12, 13, and 14. The RBSL arsenic (50 μ g/L) was exceeded during the second sampling event at location FDS13A (210 μ g/L). During the third sampling event at FDS13A, arsenic (18.3 μ g/L) was below the RBSL. To support the FDS CAR (EnSafe, September 10, 1998) recommendation of intrinsic remediation for the total naphthalenes detected in soil, the follow-on Letter Report for these areas (EnSafe, June 30, 1999) recommended limited monitoring of groundwater for these areas. This report recommended that groundwater at well FDS14B downgradient of FDSSC06701 and wells FDS13B and FDS13C downgradient of FDSSC06601 be sampled and analyzed for RBSL SVOCs two more times at three-month intervals to demonstrate that soil contaminants are not adversely impacting groundwater. #### 2.8.4 Area 15 The Phase I TPH-GRO sample results for surface-soil boring FDSSH02301 was 501 μ g/kg, 2 prompting subsequent Phase II soil and groundwater sampling within Area 15 (Table 2.1). 2 RBSL VOCs and metals were below their respective screening levels in soil at Area 15. 9 10 13 Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 Total naphthalenes were elevated at FDSSH02301. Based on these results, a 3- to 5-foot subsurface soil sample, FDSSH02302, was collected and analyzed to determine the vertical extent of naphthalenes at Area 15. No subsurface soil concentration from this sample exceeded its appropriate RBSL (Table 2.3). No RBSL VOCs/metals were exceeded in groundwater samples from Area 15. No RBSL SVOCs were detected in Area 15 groundwater samples (Table 2.5). Because of the absence of RBSL parameters detected in surface or subsurface soil and groundwater at Area 15, EnSafe recommended and SCDHEC concurred no further action for soil or groundwater at this area. ## 2.8.5 Other Areas Though not assigned an area, Phase I boring FDSSC084 was given constituent specific analyses during Phase II due to observed conditions. No soil RBSL parameters were exceeded at this location (Table 2.3). Q. ross reference the Areas 19 and 20 were added to the scope of the FDS investigation in 1998. 14 During 1999 and 2000, field investigations were conducted at Areas 19 and 20 to identify potential 15 impacts to soil and groundwater, and to define the extent of free product contamination, if any, 16 at these sites. DPT soil and groundwater samples were collected at these sites and analyzed for 17 RBSL VOC and SVOC parameters. Initial rounds of DPT sampling focused on areas of 18 contamination identified by the previous site investigations or IM activities. 19 Subsequent DPT sampling was performed to delineate the extent of contamination around RBSL 20 exceedances. Table 2.6 on page 57 details the Areas 19 and 20 DPT soil and groundwater 21 samples, and their analyses. Table 2.7 on page 61 summarizes the Areas 19 and 20 DPT 22 analytical soil results. Table 2.8 on page 68 presents a summary of the DPT groundwater results 23 S 7 10 11 12 13 14 15 16 20 Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 for Areas 19 and 20. Seven permanent shallow groundwater monitoring wells were installed at Areas 19, along with six wells at Area 20, to confirm the DPT results and facilitate future monitoring, if required, at these sites. Table 2.9 on page 74 presents a summary of the monitoring well analytical results at Areas 19 and 20. #### 2.8.5.1 Area 19 Area 19 DPT soil data revealed benzene, ethylbenzene, and naphthalenes detected above the appropriate groundwater protection RBSLs, with most exceedances detected near the source area (the former Facility 148) along the southwest side of Building 98. DPT groundwater results for Area 19 revealed benzene, total PAHs, naphthalene, 2-methylnapthalene, and chrysene concentrations above the appropriate groundwater RBSLs. These results revealed that groundwater adjacent to Building 98 has been impacted by petroleum constituents, primarily within the same area of impacted soil adjacent to the southwest side of Building 98. The monitoring well results showed that the area of localized groundwater contamination defined during the DPT sampling was appropriately delineated at this site. The monitoring well results showed that the area of localized groundwater contamination defined during the DPT sampling was appropriately delineated at this site. The FDS Car Addendum will recommend that Area 19 monitoring wells be sampled quarterly for a period of one year. The recommended analyses for these quarterly samples will be RBSL VOCs and SVOCs to ensure that constituents detected in soil and groundwater at Area 19 are not migrating off-site. 5 10 11 14 18 19 Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 #### 2.8.5.2 Area 20 Area 20 DPT soil analytical data revealed that benzene, naphthalene, and total naphthalenes were present above the appropriate groundwater protection RBSLs (Table 2.7). Most exceedances were detected adjacent to the footprint of the Viaduct Road pipeline IM and also northwest of the removal area along the fuel pipeline corridor which parallels Hobson Avenue. DPT groundwater analytical results for Area 20 detected total PAHs, naphthalene, 2-methylnapthalene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and chrysene above the appropriate RBSLs (Table 2.8). These results revealed that naphthalene and total PAHs exceeded their RBSLs at sample locations northwest of the pipeline removal area along Hobson Avenue. Petroleum contaminated soil in this area is the likely source of the groundwater contamination at this locale. Groundwater analytical data from the Area 20 monitoring wells exhibited no RBSL exceedances (Table 2.9). The monitoring well results showed that the area of localized groundwater contamination defined during the DPT sampling was appropriately delineated at this site. The FDS Car Addendum will recommend that Area 20 monitoring wells be sampled quarterly for a period of one year. The recommended analyses for these quarterly samples will be RBSL VOCs and SVOCs to ensure that constituents detected in soil and groundwater at Area 20 are not migrating off-site. #### 3.0 HOBSON FUEL FARM INVESTIGATION As mentioned in Section 1.0, the primary purpose of the HFF investigation was to perform a 20 focused review of previous investigations to determine whether the HFF area had been adequately 21 characterized to support site closeout requirements. Particular interest was placed on the 22 possibility that RCRA constituents might have been overlooked, since the majority of the site was 23 investigated using SCDHEC's petroleum program guidelines. The secondary purpose was to 24 5 7 13 15 25 To this really the cose is Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 provide adequate information to assist the Project Team in making a site disposition recommendation to the RDA. DPT soil (surface [0-1 ft bgs] and subsurface soil [3-5 ft bgs] intervals) and shallow groundwater samples were collected to characterize the nature and extent of soil and groundwater contamination at the site. The soil and groundwater samples were analyzed for VOC and SVOC parameters. Table 3.1 on page 77 presents the soil and groundwater DPT samples collected and the analyses performed at the HFF. Figure 3-1 on page 27 illustrates the HFF sample locations. 3.1 Data Gaps — This disussion needs to be tried into conclusions drown from previous investigations. The HFF soil and groundwater DPT sampling points were located to fill the following data gaps: 9 No constituent specific soil samples were collected within the HFF area during the FDS Phase II investigation. This was because FDS Phase I TPH sampling results from within the HFF area were below the 50 µg/kg threshold, and thus did not trigger Phase II sampling. The need to adequately confirm the contaminated area delineated around tanks 3916 and 3917 by the ESE and KEMRON investigations. • The need to completely delineate petroleum contamination in soil and groundwater within the HFF and identify potential RCRA concerns prior to property transfer. 17 ### 3.2 HFF Soil Sample Results Ten DPT soil borings, plus four follow-on borings (data results pending as of this report), were advanced at the HFF. No free product was observed. Surface and subsurface soil results from these borings were compared to the appropriate RBSLs. Table 3.2 on page 79 presents a summary of the analytical results of the DPT soil sampling. Figures 3-2 and 3-3 on pages 28 and 29 provide data summaries of surface soil and subsurface soil results, respectively, for all recently collected soil samples from investigations conducted within the HFF and adjacent areas. 16 18 19 20 25 Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 Two VOCs, acetone and methylene chloride, were detected in surface soil. Neither of these analytes is regulated by a RBSL concentration. In addition, none of these exceeds any other applicable screening value. Four VOCs, acetone, chlorobenzene, ethylbenzene, and methylene chloride were detected in subsurface soil at the HFF. Of these, only ethylbenzene is a RBSL constituent, and the subsurface soil detection at location HFFSP002 (2 μ g/kg) was below the groundwater protection RBSL of 1,260 μ g/kg. why isn't part this gar? Twenty-one SVOCs were detected in soil during the HFF investigation. Of these, total naphthalenes, naphthalene, 2-methylnaphthalene, benzo(a)anthracene, benzo(b)fluoranthene,
benzo(k)fluoranthene, chyrsene and dibenz(a,h)anthracene are regulated fuel constituents. Seven of these parameters exceeded the dermal protection RBSLs applicable to surface soil. These surface soil exceedances were limited to locations HFFSP004, HFFSP006 and HFFSP007. The subsurface concentrations of these compounds at these locations were all either non-detect or below the applicable RBSL. Fourteen other SVOCs were detected in surface soil. Of these, only benzo(a)pyrene and indeno(1,2,3-cd)pyrene exceeded the applicable RBCs of 87 μ g/kg and 870 μ g/kg respectively. Significant subsurface soil impact was limited to location HFFSP008. Concentrations of RBSL parameters total naphthalenes and naphthalene exceeded the RBSL of 210 μ g/kg. No other subsurface constituents exceeded applicable screening values. #### 3.2.1 HFF Soil Analytical Summary As previously discussed in this report, Figure 2-1 on page 23 illustrates the locations and analytical parameter suites for soil samples collected as part of the investigation of the FDS, Zone L RFI and the HFF. The area was initially screened for surface and subsurface TPH as part of the FDS investigation. The surface and subsurface TPH results are summarized in Figures 2-3 and 2-4 on pages 25 and 26 respectively. this would flow better by sample by Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 3 5 6 PPH was detected, less than 100 μ g/kg at several surface soil sample locations. The highest detection, FDSSH023 (501 μ g/kg), was further investigated as Area 15 within the HFF. Two others are located within the area of contaminated soil identified by KEMRON near former tanks 3900G and 3900H, FDSSH001 (10 μ g/kg) and FDSSH006 (9.0 μ g/kg). The other four locations FDSSH016 (32 μ g/kg), FDSSH018 (10 μ g/kg), FDSSH021 (10 μ g/kg), and FDSSH022 (10 μ g/kg) are located near tanks 3900E and 3900F. TPH was detected in subsurface locations FDSSC081 (9 μ g/kg), FDSSC082 (8 μ g/kg) and FDSSC083 (8 μ g/kg), which are associated with underground fuel pipelines, below the screening value of 50 μ g/kg. TPH detected in subsurface locations FDSSC047 (19,000 μ g/kg), FDSSC065 (147 μ g/kg), FDSSC066 (67 μ g/kg) and FDSSC067 (106 μ g/kg) exceeded the 50 μ g/kg value. These detections resulted in further investigation as Areas 8, 12, 13 and 14 respectively. Figure 3-2 on page 28 presents the results of a comparison of the constituent-specific analytical results to the RBCA RBSLs and to Region III surface soil RBCs (THQ = 0.1). Areas potentially problematic to redevelopment of the HFF area are HFFSP004, HFFSP005, HFFSP006 and HFFSP007. The compounds of concern in these four locations are SVOCs, commonly associated with petroleum contamination. These four locations are associated with tanks 3900E and 3900F. Other potential problem locations are 037SP003, 037SP004 and 037SP041. These exceedances were driven by arsenic exceeding the RBC. All were below the Zone G background concentration for arsenic of 17.2 μg/kg. Figure 3-3 on page 29 presents the results of a comparison of the constituent-specific analytical 21 result to the RBCA groundwater protection RBSL and to site-specific SSLs (AOC 619/SWMU 4). 22 Potentially problematic areas are associated with: two points in Area 20, F20SP001 and 23 12 Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 The VOCs detected were 1,2-dichloroethene (total), and methylene chloride. The SVOCs detected were benzoic acid and bis(2-ethylhexyl)phthalate. None of these constituents are RBSL parameters. The concentration of 1,2-dichloroethene, $21 \mu g/L$, exceeded the MCL of $5 \mu g/L$ and the tapwater RBC of 5.5 $\mu g/L$. No other screening values were exceeded. None of the compounds detected in groundwater are considered to be fuel constituents. ∠4.0 CONCLUSIONS This expedited evaluation of the HFF was performed to gain a comprehensive understanding of current soil and groundwater conditions to facilitate property transfer and subsequent development activities. As a result, the potentially problematic areas near the anticipated area of construction, tanks 3916 and 3917, were the primary focus of delineation sampling. Data gaps in soil still exist near tanks 3900E and 3900F. However, delineation in those areas was not included in EnSafe's scope of work for the HFF. In the area targeted for redevelopment, tanks 3916 and 3917, surface soil exhibited no petroleum related or RCRA constituents which might be a concern. Subsurface soil was only a potential concern at location HFFSP008, where petroleum related SVOCs were detected at concentrations that have the potential to leach to shallow groundwater. This area is a single point exceedance that has been fully delineated should the Navy decide to mitigate the problem. However, EnSafe feels there is no leaching concern because of the conservative screening levels used. Considering that a building over the site would inhibit percolation and subsequent potential for 19 leaching, the Navy may choose to manage the risk in other ways rather than perform a soil 20 removal at the HFF. What about us. non- ACRA detections? "problem" that we are saying don't feel is a problem? where field actitant near scop of the Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 | 5.0 REFERENCES | 1 | |---|----| | EnSafe, Inc. (September 10, 1998). Fuel Distribution System Contamination Assessment Report | 2 | | NAVBASE Charleston, South Carolina. | 3 | | EnSafe, Inc. (June 30, 1999). Letter Report, Fuel Distribution System Area 8, Charleston Naval | 4 | | Complex, Charleston, South Carolina. | \$ | | EnSafe, Inc. (June 30, 1999). Letter Report, Fuel Distribution System Areas 12, 13, and 14, | 6 | | Charleston Naval Complex, Charleston, South Carolina. | 7 | | EnSafe, Inc. (January 27, 2000). Letter Report, Fuel Distribution System Area 15, Charleston | 8 | | Naval Complex, Charleston, South Carolina. | 9 | | KEMRON, Inc. (1990). Contamination Assessment Report/Remedial Action Plan, Defense Fuel | 10 | | Supply Point, Charleston Naval Base, Charleston, South Carolina. | 11 | | KEMRON, Inc. (1992). Remedial Activities Summary Report, Defense Fuel Supply Point, | 12 | | Charleston Naval Base, Charleston, South Carolina. | 13 | | NFESC. (April, 1996). Site Characterization and Analysis Penetrometer System Characterization | 14 | | at AOC 626, Charleston Naval Supply Center Fuel Farm. | 15 | | S&ME, Inc. (May 28,1992). Report of the Soil Sampling and Analysis, Environmental | 16 | | Specification Preparation, 800 Foot 18-inch Fuel Pipeline, Charleston Naval Supply | 17 | | Center, Charleston, South Carolina. | 18 | | SPORTENDETCHASN. (1997). Charleston Naval Complex, Building 148 Closure Report. Where to Acc 676 I'm report? | 19 | | peterence | | 11 12 22 23 25 26 Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 Areas 1 through 20 were addressed in the FDS CAR (EnSafe September 10, 1998). During September-November of 2000, field investigations were conducted at the HFF to identify impacts to soil and groundwater, and to define the extent of free product contamination, if any, within the site area. The limited scope of the HFF investigation was to comprehensively review all previous investigations, address outstanding issues, and fill data gaps to facilitate transfer of the property. The FDS CAR (EnSafe, September 10, 1998) discusses the objectives, scope, methodology, history and physical setting for the FDS, which are applicable to this HFF site assessment. This report summarizes and compares previous investigation results, describes the specific field investigation conducted, presents and discusses the analytical data collected, and makes appropriate recommendations for the HFF. #### 1.1 Site History A historical review of figures and maps was conducted to gain a detailed perspective of the HFF area over time. Prior to the mid-1930s, the portion of the CNC where the HFF is located consisted of marshland along the Cooper River. This marshland was filled over time, and the base was expanded to the southeast over the filled area. The HFF was built over a portion of this filled area between 1936 and 1944. The HFF area originally included four 55,000 barrel (bbl) concrete tanks with brick facing. In 1974, two of these tanks (the former 3900G and 3900H) were switched from storing Navy Special Fuel Oil to the less viscous Navy Distillate. The tanks began to leak, and were taken out of service in 1975. These tanks were demolished in late 1991, and the current steel tanks (3916 and 3917) were constructed in early 1992. The site area was used as a fuel farm until the CNC was closed in the early 1990s. #### 1.2 Site Geology and Hydrogeology The FDS CAR (EnSafe, September 10, 1998) discuss the geology and hydrogeology of the FDS, including the HFF area. The shallow groundwater flow is discussed later, relative to the analytical results. South Carolina Department of Health and Environmental Control ## MEETING REGISTER | Date: | 25/50 | | | |------------|------------|-------|---------| | | CHARLESTON | NAVAL | COMPLEX | | Site ID #: | | | | | | Attendant | Affiliation | Phone # | E-Mail Address | |---|-------------|--------------------|----------------|--| | | Tom Knight | PEDMEC-BOW | (802) 898-4257 | Cogaths + @ 1 due 482 | | | • | | | Shec. State. SC.US | | | MIHIR MEH | TA SCOHEC | -BLWM 803)896- | mehtam@columb34.
4088 dhcc. state. sc. us | | | TONY HUNT | YVAL | 843.820.5525 | hust ma@ellesuth, no vlac. | | | TRIP SNELSO | N CHZM -JONES | (904)363091 | 1 towelsone jejus. com | | | | | DHEC/BLWM 4016 | | | | | | | thought e ensafe, com | | | | |
| | | | | | | | | , | • | • | _ | | | | • | | | | | | | | | | | | | | | | | ENSAFE INC. 201 North Palafox Street, Suite 200 • Pensacola, FL 32501 • Telephone 850-434-2230 • Facsimile 850-434-2288 • www.ensafe.com November 28, 2000 Commander, Southern Division Naval Facilities Engineering Command Attn: Mr. Gabriel L. Magwood, Code 1849 2155 Eagle Drive, P.O. Box 190010 North Charleston, SC 29419-9010 RE: Site Assessment Report for Hobson Fuel Farm, Charleston Naval Complex, Charleston, South Carolina (CTO 0144) Dear Mr. Magwood: EnSafe Inc. is pleased to submit two copies of the Draft-Final Site Assessment Report for the Hobson Fuel Farm (HFF) at Charleston Naval Complex for your review and comment. Please provide comments at your earliest convenience so that a final report can be generated and forwarded to the South Carolina Department of Health and Environmental Control. Should you have any questions or concerns regarding this report please do not hesitate to contact me directly at (850) 434-2230 or via e-mail at csmith@ensafe.com. Thank you for the opportunity to assist with the assessment of this area. Sincerely, ENSAFE INC. Craig R. Smith Project Manager cc: Todd Haverkost September 25, 2000 Mr. Paul Bristol Bureau of Solid and Hazardous Waste South Carolina Department of Health and Environmental Control 8901 Farrow Road Columbia, South Carolina 29203 Dear Mr. Bristol: As requested, EnSafe has compiled all analytical results from samples collected during the RFI and investigation of the Fuel Distribution System within the area of the Hobson fuel farm. This area is roughly bounded by Viaduct Rd., Hobson Ave., Wood St., and the western boundary of CNC. Phase I TPH data was used to screen for potential areas which may require additional assessment. These biased screening samples were collected from areas most likely to have been impacted, (ie., surface where the pipelines and valves were at the surface and subsurface where pipelined are buried). Subsurface samples were collected directly adjacent to the buried pipeline. Where TPH GRO exceeded 50 ug/kg, discrete samples were collected and analyzed for standard analytical parameters. Six locations within the area of interest had exceedances which triggered Phase II sampling (Areas 8, 11, the combined Areas 12, 13 and 14 and Area 15). The analytical data for these Areas is presented in the attached tables. Included in the soil analytical results tables are: Soil boring and DPT sampling results from the portion of the Zone L investigation of located in this area; Areas 19 and 20 DPT samples; SWMU 3 soil borings; and, SWMU 24 soil borings. Included in the groundwater analytical results tables are: DPT and monitoring well sampling results for the portion of the Zone L investigation in this area; Areas 19 and 20 DPT and monitoring well samples; SWMU 3 monitoring well samples; and, SWMU 24 monitoring well samples. Should you have any questions or require additional information, please contact me at (850) 434-2230 or via e-mail at csmith@ensafe.com. Thank you for the opportunity to assist with this evaluation, Sincerely, **ENSAFE** Craig R Smith Attachments FDS Soil Samples - Phase I | Bori | ng Location | Sample ID | Date | Depth | Remarks | |------|-------------|---------------------------|--------------------|--------------------|------------------------------------| | F | DSSC001 | FDSSC00101 | 9/12/96 | 4-5.5 | Fuel staining on soil, fuel odor | | F | DSSC002 | FDSSC00201 | 9/12/96 | 4-5.5 | Fuel sheen and odor | | F | DSSC003 | FDSSC00301 | 9/12/96 | 4-5.5 | Slight fuel odor noted | | F | DSSC004 | FDSSC00401 | 9/12/96 | 4-5.5 | No fuel odor noted | | F | DSSC005 | FDSSC00501 | 9/12/96 | 4-5.5 | Slight fuel odor noted | | F | DSSC006 | FDSSC00601 | 9/12/96 | 4-5.5 | No fuel odor noted | | F | DSSC007 | FDSSC00701 | 9/12/96 | 4-5 | No fuel odor noted | | F | DSSC008 | FDSSC00801 | 9/13/96 | 2.8-5.6 | Slight fuel odor noted | | F | DSSC009 | FDSSC00901 | 9/13/96 | 4-5.5 | No fuel odor noted | | F | DSSC010 | FDSSC01001 | 9/16/96 | 5.7-72 | No unusual observations logged | | F | D\$\$C011 | FDSSC01101
FDSCC01101* | 9/16/96
9/16/96 | 4-6
4-6 | Slight fuel odor noted | | F | DSSC012 | FDSSC01201 | 9/17/96 | 6.8 | Free product on sample | | E | DSSC013 | FDSSC01301 | 9/16/96 | 4.3-5.8 | Fuel odor present | | F | DSSC014 | FDSSC01401 | 9/16/96 | 6-7.5 | Slight fuel odor noted | | F | DSSC015 | FDSSC01501 | 9/17/96 | 4-6.6 | No fuel odor noted | | F | DSSC016 | FDSSC01601 | 9/16/96 | 6-7.5 | Fuel odor present | | F | DSSC017 | FDSSC01701 | 9/17/96 | 2.9-7.3 | Fuel odor present | | F | DSSC018 | FDSSC01801 | 9/18/96 | 5-7 | No fuel odor noted | | F | DSSC019 | FDSC01901
FDSC01901* | 9/17/96
9/17/96 | 4.5-6.5
4.5-6.5 | No unusual observations logged | | . Fl | DSSC020 | FDSSC02001 | 9/17/96 | 6-8 | No unusual observations logged | | F | DSSC021 | FDSSC02101 | 9/17/96 | 4-6 | Slight fuel odor noted | | F | DSSC022 | FDSSC02201 | 9/18/96 | 5-7 | No fuel odor noted | | F | DSSC023 | FDSSC02301 | 9/18/96 | 4,5-6.5 | No fuel odor noted | | F | DSSC024 | FDSSC02401 | 9/17/96 | 6-8 | No unusual observations logged | | F | DSSC025 | FDSSC02501 | 9/18/96 | 3.7-5.3 | Slight fuel odor noted | | F | DSSC026 | FDSSC02601 | 9/18/96 | 5.8-8.8 | No fuel odor noted | | F | DSSC027 | FDSSC02701 | 9/18/96 | 5-7 | Slight fuel odor noted | | F | DSSC028 | FDSSC02801
FDSCC02801 | 9/18/96
9/18/96 | 4.3-6.3
4.3-6.3 | Stong fuel odor in entire interval | | F | DSSC029 | FDSSC02901 | 9/18/96 | 4.5-6.5 | No fuel odor noted | | F | DSSC030 | FDSSC03001 | 9/19/96 | 4.5-6.5 | Fuel odor present | | F | DSSC031 | FDSSC03101 | 9/19/96 | 4.2-6.2 | No fuel odor noted | | FDS Soil | Samples - | - Phase I | |----------|-----------|-----------| |----------|-----------|-----------| | Boring Location | Sample ID | Date | Depth | Remarks | |----------------------|---|--------------------|--------------------|--------------------------------| | FDSSC032 | PDSSC03201 | 9/19/96 | 4:5-6.5 | Slight fuel odor noted | | FDSSC033 | FDSSC03301 | 9/19/96 | 5-7 | Slight fuel odor noted | | FDSSC034 | FDSSC03401 | 9/19/96 | 4.5-7.5 | No unusual observations logged | | FDSSC035 | FDSSC03501 | 9/19/96 | 7-9 | No fuel odor noted | | FDSSC036 | FDSSC03601
FDSSC03602 | 9/19/96
9/19/96 | 9-11
13-15 | No fuel odor noted | | FDSSC037 | FDSSC03701
FDSSC03702 | 9/20/96
9/20/96 | 7-8.5
12-14 | Smelled like petroleum | | FDSSC038 | FDSSC03801
FDSSC03802 | 9/20/96
9/20/96 | 7-9
12-14 | No unusual observations logged | | FDSSC039 | FDSSC03901
FDSSC03902 | 9/20/96
9/20/96 | 8-10
10.5-12.5 | No unusual observations logged | | FDSSC040 | FDSSC04001
FDSSC04002
FDSCC04002* | 9/20/96
9/20/96 | 5-7
12-14 | No unusual observations logged | | FDSSC041 | FDSSC04101
FDSSC04102 | 9/20/96
9/20/96 | 5-7
12-14 | Sulfur odor noted | | FDSSC042 | FDSSC04201
FDSSC04202 | 9/22/96
9/22/96 | 5,7-8
11.7-14.1 | No fuel odor noted | | FDSSC043 | FDSSC04301 | 9/22/96 | 5.8-7.6 | No fuel odor noted | | FDSSC044 | FDSSC04401 | 9/22/96 | 5.7-7.7 | No unusual observations logged | | FDSSC045 | FDSSC04501 | 9/22/96 | 13-15 | No unusual observations logged | | FDSSC046 | FDSSC04601 | 9/22/96 | 14-16 | No fuel order noted | | FDSSC047 | FDSSC04701 | 9/22/96 | 1 4 -16 | Petroleum odor with sheen | | FDSSC048 | FDSSC04801 | 9/22/96 | 14-16 | No unusual observations logged | | FDSSC049 | FDSSC04901 | 9/22/96 | 14-16 | No unusual observations logged | | FDSSC050 | FDSSC05001 | 9/23/96 | 7.7-9.7 | No unusual observations logged | | FDSSC051
FDSCC051 | FDSSC05101
FDSCC05101* | 9/23/96
9/23/96 | 5.7-7.4
5.7-7.4 | Petroleum odor noted | | FDSSC052 | FDSSC05201 | 9/23/96 | 6-8 | No unusual observations logged | | FDSSC053 | FDSSC05301 | 9/23/96 | unlogged | No fuel odor noted | | FDSSC054 | FDSSC05401 | 9/23/96 | 11-13 | No unusual observations logged | | FDSSC055 | FDSSC05501 | 9/23/96 | 5-9 | No unusual observations logged | | FDSSC056 | FDSSC05601 | 9/23/96 | unlogged | No unusual observations logged | | FDSSC057 | FDSSC05701 | 9/24/96 | 3.7-5.5 | No fuel odor noted | | FDSSC058 | FDSSC05801 | 9/24/96 | 4-10 | Slight fuel odor noted | | FDSSC059 | FDSSC05901 | 9/24/96 | unlogged | No fuel odor noted | | Boring Location | Sample ID | Date | Depth | Remarks | |-----------------|---------------------------|----------------------|-------------------
--| | FDSSC060 | FDSSC06001 | 9/24/96 | 46 | No unusual observations logged | | FDSSC061 | FDSSC06101
FDSCC06101* | 9/24/96
9/24/96 | 5-6 | No unusual observations logged | | FDSSC062 | FD\$SC06201 | | No Phase I sample | taken at this location | | FDSSC063 | FDSSC06301 | 9/25/96 | 6.5-8.5 | No fuel contamination noted | | FDSSC064 | FDSSC06401 | 9/25/96 | 6.5-8.5 | No unusual observations logged | | FDSSC065 | FDSSC06501 | 9/25/96 | 6.3-10.6 | Strong fuel odor noted | | FDSSC066 | FDSSC06601 | 9/25/96 | 8.5 10.5 | Strong fuel odor noted | | FDSSC067 | FDSSC06701 | 9/25/96 | 8.2-11 | No unusual observations logged | | FDSSC068 | FDSSC06801 | 9/30/96 | 8-10 | No unusual observations logged | | FDSSC069 | FDSSC06901 | 9/30/96 | 6.5-8.5 | No unusual observations logged | | FDSSC070 | FDSSC07001 | 9/30/96 | 7.3-9.2 | No unusual observations logged | | FDSSC071 | FDSSC07101 | 9/30/96 | 7.2-9.2 | No unusual observations logged | | FDSSC072 | FDSSC07201 | 10/01/96 | unlogged | No unusual observations logged | | FDSSC073 | FDSSC07301 | 10/01/96 | unlogged | No unusual observations logged | | FDSSC074 | FDSSC07401 | 10/01/96 | 9.11 | No unusual observations logged | | FDSSC075 | FDSSC07501 | 10/01/96 | 8-10 | No unusual observations logged | | FDSSC076 | FDSSC07601 | 10/01/96 | 6.6-8.4 | No fuel odor noted | | FDSSC077 | FDSSC07701
FDSCC07701* | 10/01/96
10/01/96 | 7-9
7-9 | H ₂ s odor noted | | FDSSC078 | FDSSC07801 | 10/01/96 | 7-9 | Unrecognizable organic odor noted | | FDSSC079 | FDSSC07901 | 10/01/96 | 5-7 | No fuel odor noted | | EDSSC080 | FDSSC08001
FDSCC08001* | 10/01/96
10/01/96 | 6-8
6-8 | Fuel odor present | | FDSSC081 | FDSSC08101 | 10/02/96 | 7.5-9.5 | No unusual observations logged | | FD\$SC082 | FDSSC08201 | 10/02/96 | 5.7-7.3 | No fuel odor noted | | FDSSC083 | FDSSC08301 | 10/02/96 | 6-8 | No unusual observations logged | | FDSSC084 | FDSSC08401 | 10/02/96 | 7-11 | Slight fuel odor noted | | FDSSC085 | FDSSC08501 | 10/02/96 | 5-7 | No fuel odor noted | | FDSSC086 | FDSSC08601* | 10/02/96 | . | No fuel odor noted the state of | | FDSSC087 | FDSSC08701 | 10/02/96 | 4-6 | No fuel odor noted | | FDSSC088 | FDSSC08801 | 10/02/96 | 9-11 | No fuel odor noted | | FDSSC089 | FDSSC08901 | 10/02/96 | 7-9 | No fuel odor noted | | | | FDS Soil Samples | s - Phase I | | |-----------------|---------------------------|----------------------|----------------|--------------------------------| | Boring Location | Sample ID | Date | Depth | Remarks | | FDSSC090 | FDSSC09001 | 10/03/96 | 3-5 | No unusual observations logged | | FDSSC091 | FDSSC09101
FDSCC09101* | 10/03/96
10/03/96 | 9-11
9-11 | No unusual observations logged | | FDSSC092 | FDS\$C09201 | 10/03/96 | 6-8 | No fuel odor noted | | FDSSC093 | FDSSC09301 | 10/03/96 | 6-8 | No unusual observations logged | | FDSSC094 | FDSSC09401 | 10/03/96 | 5-7 | Stong fuel odor noted | | FDSSC095 | FDSSC09501
FDSCC09501* | 10/03/96
10/03/96 | 5-7
5-7 | Fuel odor throughout interval | | FDSSC096 | FDSSC09601 | 10/03/96 | 5-7 | No unusual observations logged | | FDSSC097 | FDSSC09701
FDSSC09702 | 10/03/96
10/03/96 | 7-9
9-11 | Fuel oder noted | | *FDSSC098 | FDSSC09801 | 10/03/96 | 9-11 | No fuel odor noted | | FDSSC099 | FDSSC09901 | 10/03/96 | 9-11 | No fuel odor noted | | FDSSC100 | FDSSC10001
FDSCC10001 | 10/04/96
10/04/96 | 13-15
13-15 | No fuel odor noted | | FDSSC101 | FDSSC10101 | 10/04/96 | 9-11 | No fuel odor noted | | FDSSC102 | FDSSC10201 | 10/04/96 | 9-11 | No fuel odor noted | | FDSSC103 | FDSSC10301 | 10/04/96 | 9-11 | No fuel odor noted | | FDSSC104 | FDSSC10401
FDSSC10402 | 10/04/96
10/04/96 | 4-6
9-11 | No fuel odor noted | | FDSSC105 | FDSSC10501 | 10/04/96 | 4-5 | No fuel odor noted | | FDSSC106 | FDSSC10601 | 10/04/96 | 7.9 | Slight fuel odor noted | | FDSSC107 | FDSSC10701
FDSCC10701* | 10/04/96
10/04/96 | 6-8
6-8 | No fuel odor noted | | FDSSC108 | FDSSC10801 | 10/04/96 | 6-8 | No fuel odor noted | | FDSSC109 | FDSSC10901 | 10/05/96 | 7-9 | No fuel odor noted | | FDSSC110 | FDSSC11001 | 10/05/96 | 7.9 | No fuel odor noted | | FDSSC111 | FDSSC11101 | 10/05/96 | 6-8 | No fuel odor noted | | FDSSC112 | FDSSC11201 | 10/05/96 | 5.7 | No fuel odor noted | | FDSSC113 | FDSSC11301 | 10/05/96 | 5-7 | No fuel odor noted | | FDSSC114 | FDSSC11401
FDSCC11401* | 10/05/96
10/05/96 | 3-5
-3-5 | No fuel odor noted | | FDSSC115 | FDSSC11501 | 10/05/96 | 3-5 | No fuel odor noted | | FDSSH001 | FDSSH00101 | 10/18/96 | 0 1 | | | FDSSH002 | FDSSH00201 | 10/17/96 | 0-1 | | | FDSSH003 | FDSSH00301 | 10/17/96 | 0-1 | | | FDS Soil Samples - Phase I | | | | | |----------------------------|---------------------------|----------------------|----------------|--| | Boring Location | Sample ID | Date | Depth | Remarks | | FDSSH004 | FDSSH00401 | 10/17/96 | 01 | Andrew Markett | | FDSSH005 | FDSSH00501 | 10/17/96 | 0-1 | | | FDSSH006 | FDSSH00601 | 10/21/96 | 0.1 | | | FDSSH007 | FDSSH00701 | 10/17/96 | 0-1 | | | FDSSH008 | FDSSH00801 | 10/21/96 | 0-1 | | | FDSSH009 | FDSSH00901 | 10/21/96 | 0-1 | | | FDSSH010 | FDSSH01001 | 10/21/96 | 0-1 | | | FDSSH011 | FDSSH01101 | 10/17/96 | 0-1 | | | FDSSH012 | FDSSH01201 | 10/18/96 | 0-1 | | | FDSSH013 | FDSSH01301 | 10/17/96 | 0-1 | | | FDSSH014 | FDSSH01401 | 10/17/96 | 0-1 | | | FDSSH015 | FDSSH01501 | 10/17/96 | 0-1 | | | FD\$\$H016 | FDSSH01601 | 10/18/96 | 0-1 | | | FDSSH017 | FDSSH01701 | 10/18/96 | 0-1 | | | FDSSH018 | FDSSH01801 | 10/18/96 | 0-1 | | | FDSSH019 | FDSSH01901 | 10/18/96 | 0-1 | | | FDSSH020 | FDSSH02001
FDSCH02001* | 10/18/96
10/18/96 | 0-1
0-1 | | | FDSSH021 | FDSSH02101 | 10/18/96 | 0-1 | | | FD\$SH022 | FDSSH02201 | 10/18/96 | 0-1 | | | FDSSH023 | FDSSH02301 | 10/17/96 | 0-1 Str | ong fuel odor noted | | FDSSH024 | FDSSH02401
FDSCH02401* | 10/21/96
10/21/96 | 0-1 Sûn
0-1 | ong fuel odor noted | | FDSSH025 | FDSSH02501 | 10/21/96 | 0-1 | unica de la companya | | FDSSH026 | FDSSH02601 | 10/21/96 | 0-1 Str | ong fuel odor noted | | FDSSH027 | FDSSH02701 | 10/21/96 | 0-1 | | Note * = Indicates a duplicate sample. H₂S = hydrogen sulfide All Phase I samples analyzed for total petroleum hydrocarbons-gasoline range organics (TPH-GRO) and TPH-diesel range organics (DRO) unless noted. | Sample ID | Result | Area | | | |------------------------|--------------------------
--|--|--| | TPH-DRO Diesel (mg/kg) | | | | | | FDSSC0270i | 30.20 | | | | | FDSSC03001 | 102.00 | Area 7 | | | | FDSSC11401 | 336.00 | Area 18 | | | | | TPH-GRO Gasoline (μg/kg) | | | | | FDSSC00101 | 14.00 | | | | | FDSSC00201 | 16300.00 | Area 1 | | | | FDSSC00301 | 24.00 | | | | | FDSSC00401 | 13.00 | | | | | FDSSC00501 | 11.00 | | | | | FDSSC00601 | 9.00 | | | | | FDSSC00701 | 35.00 | | | | | FDSSC00801 | 24.80 | en e | | | | FDSSC00901 | 13.50 | | | | | FDSSC01001 | 22.60 | ing an indicate the state of th | | | | FDSSC01101 | 61.80 | Area 4 | | | | FDSSC01201 | 124000.00 | Area 2 | | | | FDSSC01301 | 77.60 | Area 6 | | | | FDSSC01401 | 67.50 | Area 3 | | | | FDSSC01501 | 25.50 | | | | | FDSSC01601 | 65.00 | Area 5 | | | | FDSSC01701 | 32.70 | | | | | FDSSC01901 | 37.95 | and the state of the second | | | | FDSSC02001 | 23.60 | | | | | FDSSC02101 | 12.40 | | | | | FDSSC02201 | | | | | | FDSSC02301 | | | | | | FDSSC02501 | 10.00 | | | | | FDSSC02601 | 29.00
 | | | | | FDSSC02801 | 25.50 | | | | | FDSSC02901 | 13.00
9.00 | | | | | FDSSC03001 | 9.00 | | | | | Sample ID | Result | Area | |--------------|--|---| | FDSSC03101 | 8.00 | | | FDSSC03201 | 27.00 | | | FDSSC03301 | 18.00 | | | FDSSC03602 | 15.00 | | | FDSSC03701 | 23.80 | | | FDSSC03702 | 20.30 | | | FDSSC03901 | 17.20 | | | FDSSC03902 | 24.00 | The state of the state of | | FDSSC04001 | 16.40 | | | FDSSC04002 | 15.40 | | | FDSSC04101 | 14.60 | | | FD\$\$C04102 | 14.00 | n de karangan dan palakan dan karangan dan karangan dan karangan dan karangan dan karangan dan karangan dan ka
Karangan dan karangan karang | | FD\$SC04201 | 8.51 | | | FDSSC04202 | 21.50 | community community (community community) | | FDSSC04301 | 23.70 | | | FDSSC04401 | 35.80 | ur and a set of the first | | FDSSC04601 | 11.10 | | | FDSSC04701 | 19000.00 | Area 8 | | FDSSC04801 | 8.88 | | | FDSSC04901 | 7.12 | | | FDSSC0500 | 15730 | | | FDSSC05101 | 42.75°
- 13 - 14 7480° 846 - 13 3 517 - 14 78 3 | Area 11 | | FDSSC05201 | 8.56 | | | FDSSC05301 | 24.60 | | | FDSSC05401 | 16.80 | | | FDSSC05501 | 63.70
37.60 | Area 10 | | FDSSC05701 | 17.00 | (2018年1日) 1980日 1980年 1 | | FDSSC05801 | 10.600 | Area 9 | | FDSSC05901 | 10.00 | | | FDSSC06001 | 21.00 | | | FDSSC06101 | 8.00 | a contrasta d'unistàni di el stini Merè ; e | | | | | | Sample ID | Res | sult | Агеа | |--------------------|---|-----------|-------------------------------------| | FDSSC06401 | 8.0 | 30 | | | FDSSC06501 | 147 | .00 | Area 12 | | FDSSC06601 | 67. | 00 | Area 13 | | FDSSC06701 | 106 | | Area 14 | | FDSSC06801 | 18. | | | | FDSSC06901 | 8.0 | 00 | | | FDSSC07001 | is 7, 15. | 00 | | | FDSSC07201 | 8.0 | 00 | | | FDSSC07301 | 15) | 00 | raw Lines | | FDSSC07401 | 8.0 | 00 | | | FDSSC07701 | alva et kalendar et e e e e e e e e e e e e e e e e e e | 50 | | | FDSSC08101 | 9.0 | 00 | | | FDSSC08201 | 8.0 | | | | FDSSC08301 | 8.0 | 00 | | | FDSSC08401 | 7.0 | 0 | - A 10 | | FDSSC08801 | 9.0 | XX | | | FDSSC08901 | 35. | | | | FDSSC09501 | 33078 | 8.50 | Area 17 | | FDSSC09701 | 25. | 00 | | | FDSSC09702 | 87.6 | 00 | Area 16 | | FDSSC10001 | 17.0 | | | | FDSSC10501 | 42.6 | 00 | | | FDSSC10601 | 7.0 | 00 | | | FDSSC10701 | 9.5 | | ara i sa sa ansi sa a | | FDSSC11201 | 9.0 | 0 | | | FDSSC11301 | 15.0 | | , , , , , , , | | | | 0 | | | FDSSH00101 | 10.0
Table (1996) (1996) (1997) (1996) | | land the library was the decided to | | FDSSH006 01 | 9.0 | 0 | | | FDSSH01201 | 9.0 | | Normal and American Action | | FD\$\$H01601 | 32.0 | 00 | | | FDSSH01801 | 10.0 | 00 | | | Sample ID | Result | Area | |------------|--------|---------| | FDSSH02101 | 10.00 | | | FDSSH02201 | 10.00 | | | FDSSH02301 | 501.00 | Area 15 | | FDSSH02601 | 20.00 | | #### Notes: a = Average of original duplicate concentrations. Original sample concentration was 77.6 μg/kg. b = Included based on visual observation of gross contamination. Bolded concentrations exceed 50 μg/kg (GRO) or 50 mg/kg (DRO). | FDS Soil Samples - Phase II | | | | | |-----------------------------|---------------------------|---------------------|----------------------------|--| | Boring Location | Sample Identifier | Date | Sample Interval | Remarks | | FDSSC002 | FDSSC00201 | 12/4/96 | 4-6 | Fuel odor noted | | FDSSC011 | FDSSC01101 | 12/4/96 | 4-6 | No unusual observations logged | | FDSSC012 | FDSSC01201 | 12/4/96 | 6-8 | Free product present | | FDSSC013 | FDSSC01301 | 12/4/96 | 4-6 | Oily sheen present | | FDSSC014 | FDSSC01401 | 12/5/96 | 6-8 | Strong fuel odor noted, 117 ppm FID | | FDSSC016 | FDSSC01601 | 12/4/96 | 6-8 | Fuel odor noted | | FDSSC030 | FDSSC03001 | 12/4/96 | 4.5-6.5 | No odor noted, 83 ppm FID | | FDSSC47A | FDSSC47A01 | 9/24/96 | 13.5-15.5 | No unusual observations logged | | FDSSC051 | FDSSC05101 | 1/13/97 | 5-7 | | | FDSSC055 | FDSSC05501 | 12/5/96 | 6-8 | No unusual observations logged, 17 ppm FID | | FDSSC058 | FDSSC05801 | 9/24/96 | 4-6 | Fuel odor | | FDSSC062 | FDSSC06201 | 12/10/96 | 0-1 | Strong fuel odor noted | | FDSSC065 | FDSSC06501 | 9/25/96 | 6.3-10.6 | Strong fuel odor noted | | FDSSC066 | FDSSC06601 | 12/4/96 | 8.5-10.5 | Strong fuel odor | | FDSSC067 | FDSSC06701
FDSCC06701* | 12/4/96
12/4/96 | 8.5-10.5
8.5-10.5 | Strong fuel odor noted, 173 ppm FID | | FDSSC084 | FDSSC08401 | 10/02/96 | 7-11 | Slight fuel odor noted | | FDSSC094 | FDSSC09401 | 10/03/96 | 5-7 | Strong fuel odor noted | | FDSSC095 | FDSSC09501 | 12/05/96 | 5-7 | Strong fuel odor noted | | FDSSC097 | FDSSC09701
FDSCC09701* | 12/05/96
12/5/96 | 8-10
8-10 | Strong fuel odor noted | | FDSSC114 | FDSSC11401 | 12/05/96 | 3-5 | No unusual observations logged, 54 ppm FID | | FDSSH023 |
FDSSH02301 | 10/17/96 | 0-1 | Strong fuel odor noted | | FDSSH024 | FDSSH02401 | 10/21/96 | 0-1 | Strong fuel odor noted | | FDSSH026 | FDSSH02601 | 10/21/96 | 0-1 | Strong fuel odor noted | #### Notes: parts per million ppm = parts per million Samples analyzed using SW-846 methods (metals, pesticides/PCBs, SVOAs, VOAs) at data quality objective (DQO) Level III. Phase II sample collected concurrently with Phase I TPH sample based on field observations. Duplicates were analyzed for Appendix IX parameters (metals, pesticides/PCBs, herbicides, organophosphorous (OP) pesticides, dioxins, SVOAs, VOAs); cyanide, and hex-chrome, Level IV. FID Flame ionization detector # Analytes Detected in Subsurface Soil Fuel Distribution System | Parameters | Subsurface ameters Location Conc. RBSL/SSL | | RB\$L/\$\$L | Subsurface
Background | |-----------------------------|--|---|--|--| | Area 8 | | | | | | TPH - GRO (μg/kg) | | | | | | Gasoline | FDSSC04701 | 19000 | NL/NL | NA | | Volatile Organic Compounds | (μg/kg) | | | | | Toluene | FDSSC47A01 | 4 | 1622/12000 | NA | | Semivolatile Organic Compou | nds (μg/kg) | | | | | Total Naphthalenes | FDSSC47A01 | 5210 | 210/84000 | NA | | 2-Methylnaphthalene | FDSSC47A01 | 5100 | NL/126000 | NA | | Naphthalene | FDSSC47A01 | 110 | NL/84000 | NA. | | Acenaphthene | FDSSC47A01 | 430 | NL/570000 | NA | | Anthracene. | FDSSC47A01 | 280 | NL/12000000 | NA . | | Benzo(a)anthracene | FDSSC47A01 | 300 | 73084/2000 | NA | | Dibenzofuran | FDSSC47A01 | 330 | NL/50000 | NA NA | | Fluoranthene | FDSSC47A01 | 190 | NL/4300000 | NA | | Fluorene | FDSSC47A01 | 570 . j. | NL/560000 | NA. | | Phenanthrene | FDSSC47A01 | 1600 | NL/1380000 | NA | | Pyrene *** | FDSSC47A01 | 710 | NL/4200000 | NA | | Inorganics (mg/kg) | | | * (c) | | | Aluminum (Al) | FDSSC47A01 | 15000 | NL/1000000 | 23600 | | Arsenic (As) | FDSSC47A01 | 16 | NL/29 | 15.5ª | | Barium (Ba) | FDSSC47A01 | 27.3 | NL/1600 | 64.5 | | Beryllium (Be) | FDSSC47A01 | 1 | NL/63 | 1.63 | | Calcium (Ca) | FDSSC47A01 | 30800 | NL/NL | NL | | Chromium (Cr) | FDSSC47A01 | 29.6 | NL/1000000 | 43.4° | | Cobalt (Co) | FDSSC47A01 | 5.6 | NL/2000 | 8.14 | | Copper (Cu) | FDSSC47A01 | 18.9 | NL/920 | 32.6 | | Iron (Fe) | FDSSC47A01 | 19600 | NL/NL | NL | | Lead (Pb) | FDSSC47A01 | 30.3 | NL/400 | 66.3 | | 化复合物理数据数据数据 医二甲磺酸盐 | Surmacida (na 1777) | 4270 | NL/NL | M | | Magnesium (Mg) | FDSSC47A01 | erre en la compart des prévations de la | THE STATE OF THE PARTY P | 201 | | Manganese (Mn) | FDSSC47A01 | 186 | NL/1100 | | | Mercury (Hg) | FDSSC47A01 | 0.09 | NL/2.1 | 4 x 16 x 11 \$ 0.31 x 10 x 12 x 12 x 12 x 12 x 12 x 12 x 1 | | Potassium (K) | FDSSC47A01 | 1870 | NL/NL | NL | # Analytes Detected in Subsurface Soil Fuel Distribution System | | • | dei Distribution Syst | ciii | | |----------------------------|---------------|-----------------------|--------------|--------------------------| | Parameters | Location | Subsurface
Conc. | RBSL/SSL | Subsurface
Background | | Inorganics (mg/kg) | | | | | | Selenium (Se) | FDSSC47A01 | 1.00 | NL/5 | 1.26 | | Sodium (Na) | FDSSC47A01 | 2300 | NL/NL | NL | | Vanadium (V) | FDSSC47A01 | 42.7 | NL/6000 | 72.5 | | Zinc (Zn) | FDSSC47A01 | 77.9 | NL/12000 | 145 | | Area 11 | | | | | | TPH - GRO (μg/kg) | | | | | | Gasoline | FDSSC05101 | 42.75 | NLANL | NA. | | Semivolatile Organic Compo | ounds (μg/kg) | | - V (1) | | | bis(2-Ethylhexyl)phthalate | FDSSC05101 | 1500 | NL/3600000 | NA | | Chrysene | FDSSC05101 | 80 | 12998/160000 | NA | | Inorganics (mg/kg) | | | | | | Aluminum (Al) | FDSSC05101 | 5690 | NL/1000000 | 23600 | | Barium (Ba) | FDS\$C05101 | 23.3 | NL/1600 | 64.5 | | Beryllium (Be) | FDSSC05101 | 0.24 | NL/63 | 1.63 | | Cadmium (Cd) | FDSSC05101 | 0.05 | NL/8 | 0.48 | | Calcium (Ca) | FDSSC05101 | 1770 | NLANL | NL | | Chromium (Cr) | FDSSC05101 | 6.1 | NL/1000000 | 43.4ª | | Cobalt (Co) | FDSSC05101 | 0.67 | NL/2000 | 8.14 | | Copper (Cu) | FDSSC05101 | 2.6 | NL/920 | 32.6 | | Iron (Fe) | FDSSC05101 | 4300 | NL/NL | NL NL | | Lead (Pb) | FDSSC05101 | 8.8 | NL/400 | 66.3 | | Magnesium (Mg) | FDSSC05101 | 269 | NLAL | NL. | | Manganese (Mn) | FDSSC05101 | 27.1 | NL/1100 | 291 | | Mercury (Hg) | FDSSC05101 | 0:25 | NL2.1 | 0.31 | | Nickel (Ni) | FDSSC05101 | 2.8 | NL/130 | 18.3 | | Sodium*(Na) | FDSSC05101 | 175 | NL/NL | NL. | | Thallium (Tl) | FDSSC05101 | 0.41 | NL/0.95 | 0.95 | | Vanadium (V) | FDSSC05101 | 15.5 | NL/6000 | 72.5 | | Zinc (Zn) | FDSSC05101 | 9.9 | NL/12000 | 145 | # Analytes Detected in Subsurface Soil Fuel Distribution System | Parameters | Location | Subsurface
Conc. | RBSL/SSL | Subsurface
Background | |-------------------------------|--|--|-----------------------------------
--| | Area 12, 13, 14 | | | 71 | | | TPH - GRO (μg/kg) | | | | | | Gasoline period | FDSSC06501
FDSSC06601
FDSSC06701 | 147
67
106 | NI-XIL | | | Volatile Organic Compounds (µ | g/kg) | | 11172 | | | Carbon disulfide | FDSSC06601
FDSSC06701 | 2 | N1/32000 | M | | Toluene | FDSSC06501
FDSSC06601 | 47
4 | 1622/12000 | NA | | Xylene (Total) | FDSSC06601
FDSSC06601 | 12 | 42471/148000 | , NA | | | | TO THE STATE OF TH | STOLEN STANDARD STANDARD STANDARD | The state of s | | Semivolatile Organic Compound | to the second appropriate to the second | 6 | 210/2/000 | | | Total Naphthalenes | FDSSC06501
FDSSC06601
FDSSC06701 | 62
6500
4700 | 210/84000 | weeks of NA | | 2-Methylnaphthalene | FDSSC06501
FDSSC06601
FDSSC06701 | 62
3100
4700 | NL/126000 | NA | | Naphthalene | FDSSC06601 | 3400 | NL/84000 | NA NA | | Acenaphthlene | FDSSC06501
FDSSC06601
FDSSC06701 | 130
3000
1400 | NL/570000 | NA | | Anthracene | FDSSC06501
FDSSC06601
FDSSC06701 | 110
3900
1450 | NL/12000000 | NA
1 | | Benzo(a)anthracene | FDSSC06501
FDSSC06601
FDSSC06701 | 86
1800
1355 | 73084/2000 | NA | | Benzo(b)fluoranthene | FDSSC06501
FDSSC06601 | 72
630 | 29097/5000 | , NA | | | FDSSC06701 | 615 | | | | Benzo(k)fluoranthene | FDSSC06601
FDSSC06701 | 710
670 | 231109/49000 | NA | | Benzo(a)pyrene | FDSSC06601
FDSSC06701 | 930
935 | NL/8000 | | | Benzo(g,h,i)perylene | FDSSC06601
FDSSC06701 | 550
655 | NL/4.66E+08 | NA | | Chrysene 2 | FDSSC06501
FDSSC06601
FDSSC06701 | 70
2000
1510 | 12998/160000 | NA
V | | Dibenz(a,h)anthracene | FDSSC06601
FDSSC06701 | 120
170 | 87866/2000 | NA
NA | | Dibenzofuran | FDSSC06601
FDSSC06701 | 2700
1085 | NL/50000 | NA
NA | | Di-n-octyl phthalate | FDSSC06701 | 45 | NL/10000000 | NA
ALIMANAS AS MANDERS AS | | Fluoranthene | FDSSC06501
: FDSSC06601
FDSSC06701 | 120
6000
2700 | NL/4300000 | NA A | | Fluorene | FDSSC06501
FDSSC06601 | 140
4400 | NL/560000 | NA | | Indeno(1,2,3-cd)pyrene | FDSSC06601
FDSSC06701 | 2000
460
460 | NL/14000 | NA NA | | Analytes Detected in Subsurface Soil Fuel Distribution System | | |--|--| | · · · · · · · · · · · · · · · · · · · | | | Parameters | Location | Subsurface
Conc. | RBSL/SSL | Subsurface
Background | |---|--|-----------------------------|--------------------------------|------------------------------| | Semivolatile Organic Compound | s (μg/kg) | | | | | Phenanthrene Pyrene | FDSSC06501
FDSSC06601
FDSSC06701
FDSSC06501 | 240
15000
6150
290 | NL/1386000
74
NL/4200000 | NA
NA | | | FDSSC06601
FDSSC06701 | 5300
3700 | | | | Dioxin (ng/kg) | and the second | | | 200 | | Dioxin(2,3,4,8-TCDD TEQs ¹) | FDSSC06701 | 0.0847 | NL/1900 | NA | | Inorganics (mg/kg) | | | | | | Aluminum (Al) | FDSSC06501
FDSSC06601
FDSSC06701 | 28400
15400
12050 | NL/1000000 | 23600 | | Antimony (Sb) | FDSSC06501 | .51 | NL/5 | ND | | Arsenic (As) | FDSSC06501
FDSSC06601
FDSSC06701 | 17
10.2
10.35 | NL/29 | | | Barium (Ba) | FDSSC06501
FDSSC06601
FDSSC06701 | 40.6
33.9
25.65 | NL/1600 | 64.5 | | Beryllium (Be) | FDSSC06501
FDSSC06601
FDSSC06701 | 1,3
.76
.62 | NL/63 | 1.63 | | Calcium (Ca) | FDSSC06501
FDSSC06601
FDSSC06701 | 14500
40000
24100 | NL/NL | NL | | Chromium (Cr) | FDSSC06501
FDSSC06601
FDSSC06701 | 42.9
28.7
24.55 | NL/1000000 | 43.4 | | Cobalt (Co) | FDSSC06501
FDSSC06601
FDSSC06701 | 6.3
3.4
3.1 | NL/2000 | 8.14 | | Copper (Cu) | FDSSC06501
FDSSC06601
FDSSC06701 | 24.8
18.5
14.25 | NL/920 | 32.6 | | Iron (Fe) | FDSSC06501
FDSSC06601
FDSSC06701 | 30700
17800
23900 | NL/NL | NL | | Lead (Pb) | FDSSC06501
FDSSC06601
FDSSC06701 | 42.9
28.2
27.6 | NL/400 | 66.3 | | Magnesium (Mg) | FDSSC06501
FDSSC06601
FDSSC06701 | 4840
6460
2585 | NL/NL | NL | | Manganese (Mn) | FDSSC06501
FDSSC06601
FDSSC06701 | 582.
163
238.5 | NL/100 | 291
25 (1) (2) (2) | | Mercury (Hg) | FDSSC06501
FDSSC06601
FDSSC06701 | .22
.2
.175 | NL/2,1 | 0.31 | | Nickel (Ni) | FDSSC06501
FDSSC06601
FDSSC06701 | 13.9
10.1
8.15 | NL/130 | 18.3
11. 1¥ 17.5 14.5 5.4 | # Analytes Detected in Subsurface Soil Fuel Distribution System | Parameters | Location | Subsurface
Conc. | RBSL/SSL | Subsurface
Background | |-----------------------------|--------------------------|---------------------|--|---------------------------------------| | Inorganics (mg/kg) | | | | | | Potassium (K) | FDSSC06501 | 2580 | NE/NE | N. | | | FDSSC06601
FDSSC06701 | 2260
1455 | | | | Selenium (Se) | FDSSC06501
FDSSC06701 | 1.1
.87 | NL/5 | 1.26 | | Sodium (Nå) | FDSSC06601
FDSSC06701 | 5770
2340 | NLINL | NI. | | Thallium (TI) | FDSSC06501 | .57 | NL/0.95 | 0.95 | | Vanadium (V) | FDSSC06501
FDSSC06601 | 69.1
30.2 | NL/6000 | 72.5 | | | FDSSC06701 | 34.8 | A STATE OF THE STA | | | Zinc (Zn) | FDSSC06501
FDSSC06601 | 97
69 | NL/12000 | 145 | | | FDSSC06701 | 58.55 | | | | Area 15 | | | | | | TPH - GRO (µg/kg) | | | | | | Gasoline | FDSSH02301 | 501 | NL/NL | NA | | Volatile Organic Compounds | | | | | | 1.1-Dichloroethane | FDSSH02301 | 85 | NL/23000 | NA | | 1,1,1-Trichloroethane | FDSSH02301 | 48 | NL/2000 | NA | | Ethylbenzene 🖖 🖖 | FDSSH02301 | 130 | 7800000/13000 | NA TE | | Tetrachloroethene | FDSSH02301 | 13 | NL/60 | NA | | Toluene 7 | FDSSH02301 | 22 | 160000000/12000 | NA IN | | Xylene (Total) | FDSSH02301 | 1800 | 160000000/148000 | NA | | Semivolatile Organic Compou | nds (μg/kg) | | | | | Total Naphthalenes | FDSSH02301 | 8500 | 3100000/84000 | NA . | |
2-Methylnaphthalene | FD\$\$H02301 | 6800 | NL/126000 | NA | | Naphthalene | FD\$\$H02301 | 1700 | NL/84000 | NA ^{t It} . | | Chrysene | FDSSH02301 | 240 | 88000/160000 | NA | | Pluorene Acray and Market | #### FDSSH02301 | 1900 | *** *** NL/560000 | NA : NA | | Phenanthrene | FDSSH02301 | 1900 | NL/1380000 | NA | | Pyrene | FDSSH02301 | 590 | NL/4200000 | · · · · · · · · · · · · · · · · · · · | | Pesticides (µg/kg) | | | | | | Endrin | FDSSH02301 | 20 | NL/1000 | NA . | | Heptachlor | FDSSH02301 | 5.3 | NL/23000 | NA | | zamma-Chlordane | FDSSH02301 | And the second | NL/10000 | 自参加基準性或其其關鍵 | #### Analytes Detected in Subsurface Soil Fuel Distribution System | Parameters | Location | Subsurface
Conc. | RBSL/SSL | Subsurface
Background | |--------------------|------------|---------------------|------------|--------------------------| | Inorganics (mg/kg) | | | | | | Aluminum (AI) | FDSSH02301 | 2820 | NL/1000000 | 18700 | | Arsenic (As) | FDSSH02301 | 1.8 | NL/29 | 17.2 | | Barium (Ba) | FDSSH02301 | 13.1 | NL/1600 | 109 | | Cadmium (Cd) | FDSSH02301 | 0.19 | NL/8 | 1.07 | | Calcium (Ca) | FDSSH02301 | 13,100 | NLINL | N. C. | | Chromium (Cr) | FDSSH02301 | 9.3 | NL/1000000 | 42.8 | | Cobalt (Co) | FDSSH02301 | 1.3 | NL/2000 | 6.60 | | Iron (Fe) | FDSSH02301 | 4,860 | NL/NL | NL | | Lead (Pb) | FDSSH02301 | 29.5 | NL/400 | 181 | | Magnesium (Mg) | FDSSH02301 | 499 | NL/NL | NL | | Manganese (Mn) | FDSSH02301 | 29,6 | NL/1100 | 325 | | Mercury (Hg) | FDSSH02301 | 0.07 | NL/2.1 | 1.03 | | Nickel (Ni) | FDSSH02301 | 4.2 | NL/130 | 206 | | Potassium (K) | FDSSH02301 | 240 | NL/NL | NL | | Thallium (TI) | FDSSH02301 | 0.47 | NL/0.95 | 0.85 | | Vanadium (V) | FDSSH02301 | 10.6 | NL/6000 | 60.9 | | Zinc (Zn) | FDSSH02301 | 66.8 | NL/12000 | 519 | #### Notes: a = Background value for non-clay samples NL = Not listed NA = Not applicable μg/kg = Micrograms per kilogram mg/kg = Milligrams per kilogram RBSLs from the South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC, January 5, 1998) and soil-to-groundwater SSLs (DAF=20) from the Soil Screening Guidance: Technical Background Document (USEPA, 1996b) were used as reference concentrations. Bolded concentrations exceed RBSL or the SSL (if no RBSL is available). All background values for Zone G are based on twice the mean of grid sample concentrations. | | FDS G | roundwater Samples | | |-------------|--|--------------------|--| | Well Number | Sample Identifier | Date Sampled | Remarks | | Area 8 | ************************************** | | and Elibera de la Caraciana | | FDS08A | FDS08A01
FDS08A02 | 1/24/97
6/05/97 | Area 8 associated with FDSSC047 and FDSSC47A; elevated TPH-GRO/SVOCs | | FDS08B | FDS08B01
FDS08B02 | 1/25/97
6/09/97 | | | FD\$08C | FDS08C01*
FDS08C02* | 1/24/97
6/09/97 | *duplicate sample also collected | | FDS08D | FDS08D01 | 3/05/99 | Sampled for metals, VOAs, SVOAs only | | Area 11 | | | | | FDS11A | FDS11A01
FDS11A02 | 1/28/97
6/11/97 | | | FDS11B | FDS11B01
FDS11B02 | 1/28/97
6/11/97 | | | FDS11C | FDS11C01*
FDS11C02* | 1/28/97
6/11/97 | *duplicate sample also collected | | Area 12 | | | | | FDS12A | FDS12A01*
FDS12A02* | 1/27/97
6/11/97 | Area 12 associated with FDSSC065: elevated TPH-GRO/inorganics duplicate sample also collected | | FDS12B | FDS11B01
FDS11B02 | 1/27/97
6/11/97 | できた。 New Time Control Contro | | Area 13 | | 1107 441 | | | FDS13A | FDS13A01
FDS13A02 | 1/27/97
6/11/97 | Area 13 associated with FDSSC066; elevated TPH-GRO/SVOCs | | FD\$13B | FDS13B01
FDS13B02 | 1/27/97
6/13/97 | | | FDS13C | FDS13C01
FDS13C02 | 1/27/97
6/12/97 | · ** ** ** ** ** ** ** ** ** ** ** ** ** | | FDS13D | FDS13D01
FDS13D02 | 1/27/97
6/12/97 | | | FDS13E | FDS13E01
FDS13E02 | 1/28/97
6/13/97 | | | Area 14 | | | | | FDS14A | FDS14A01
FDS14A02 | 1/27/97
6/12/97 | Area 14 associated with FDSSC067:
elevated TPH-GRO/SVOCs/inorganics | | FDS14B | FDS14B01
FDS14B02 | 1/27/97
6/12/97 | | | FDS14C | FDS14C01
FDS14C02 | 1/27/97
6/13/97 | | #### **FDS Groundwater Samples** | Well Number | Sample Identifier | Date Sampled | Remarks | |-------------|----------------------|--------------------|---| | Area 15 | | | | | FDS15A | FDS15A01
FDS15A02 | 1/28/97
6/13/97 | Area 15 associated with FDSSH023; elevated TPH-GRO/inorganics | | FDS15B | FDS15B01
FDS15B02 | 1/28/97
6/16/97 | | | FDS15C | FDS15C01
FDS15C02 | 1/28/97
6/16/97 | | #### Notes: cyanide. ^{* =} Duplicates; analyzed for Appendix IX parameters (metals, pesticides/PCBs, herbicides, OP pesticides, dioxins, SVOAs, VOAs); cyanide, and hex-chrome, at DQO Level IV. Samples analyzed using SW-846 methods (metals, pesticides/PCBs, SVOAs, VOAs) at DQO Level III. First-round samples also analyzed for | | Aua | lytes Detected in G
Fuel Distribution | | | | |-----------------------------------|-----------------------------|--|-----------------------------|--|-----------------------| | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(µg/L) | Shallow
Background | | Area 8 | | | | | | | Semivolatile Organic Compoun | ds (μg/L) | | | | | | Total PAHs | FDS08B | 46 | 21 | 25/NL | NA NA | | Acenaphthene | FDS08B | 17 | 6 | 10/220 | NA | | Anthracene | FDS08B | 2 | ND . | 10/1100 | NA | | Fluoranthene | FDS08B | 6 | 4 | 10/150 | NA | | Fluorene | FDS08B | 9 | (101 4) | 10/150 | NA NA | | 2-Methylnaphthalene | FDS08B | 2 | 2 | 10/150 | NA | | Phenanthrene | FDS08B | 6 | 5 | 10/150 | NA NA | | Pyrene | FDS08B | 4 | 2 | 10/110 | NA | | Senzoic acid | FDS08B | 2 | 1 | NL/15000 | NA NA | | ekheketi sukun.
Benzyl alcohol | FDS08C | ND | 3 | NL/1100 | NA | | Butylbenzylphthalate | FDS08C | ND . | 5 | NL/730 | NA | | Dibenzofuran | FDS08B | 4 | 2 | NL/15 | NA | | Di-n-butylphthalate | FDS08C | ND | | NL/370 | NA | | inorganics (μg/L) | <u>Proprieson Transfers</u> | 5 . makkey | <u>ं ्राचित्रकार</u> | The first of the first september of the second | THE WE RESERVED | | Aliminum (AI) | FDS08A | 8900 | 381 | NL/3700 | 692 | | | FDS08B
FDS08C | 682
ND | 116 | | i dia | | Americana (Ch.) | FDS08B | ND | 2.7 | NL/1.5 | 4.85 | | Antimony (Sb) Arsenic (As) | | and the same | North Man | 图 (A) B M (E) (E) | | | Arsenic (As) | FDS08A
FDS08B | 20.6
6.5 | 16.4
6.6 | 50/4.5E-02 | | | | FDS08C | 3.4 | 3.8 | |)
1 | | Barium (Ba) | FDS08A
FDS08B | 54 .4
179 | 22.2
89.8 | 2000/260 | 31 | | | FDS08C | 131 | 72.6 | | | | Beryllium (Be) | FD\$08A | 1.3 | ND . | NL/1.6E-02 | ND | | | FDS08C | 0.66 | ND . | | | | Calcium (Ca) | FDS08A | 88100 | 76500 | NL/NL | NL | | | FDS08B
FDS08C | 83800
170000 | 90000
244000 | | | | Chromium (Cr) | FDS08A | 18.9 | ND ' | 100/18 | 3,88 | | | FDS08B | 4.8 | 2.3 | | | | Cobalt (Co) | FDS08A | 3.1 | ND | NL/220 | 1.45 | | | FDS08B
FDS08C | 3.5
2.0 | 2.8
0.85 | | | | | FDS08A | 2.0 | 0.65 | NL/13000 | | # Analytes Detected in Groundwater Fuel Distribution System | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(µg/L) | Shallow
Background | |-------------------------------|-------------------------------|------------------------------|-----------------------------|---|-----------------------| | Inorganics (μg/L) | | | | | | | Iron (Fe) | FD\$08A
FD\$08B
FD\$08C | 15500
3040
828 | 8630
23800
1445 | NENE | NE . | | Lead (Pb) | FDS08A | 8.4 | ND | 15/15 | 4.6 | | Magnesium (Mg) | FDS08A
FDS08B
FDS08C | 41900
160000
169000 | 37600
157000
127500 | NLNL
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | , NL | | Manganese (Mn) |
FDS08A
FDS08B
FDS08C | 304
386
332 | 275
561
435 | NL/84 | 2906 | | Nickel (Ni) | FDS08A
FDS08B
FDS08C | 8
13
5.8 | 1,6
0,88 | NL/73 | 4,08 | | Potassium (K) | FDS08A
FDS08B
FDS08C | 20500
71500
68600 | 20900
63800
51750 | NL/NL | NL | | Silver (Ag) | FDS08C | ND | 1.4 | 5/18 | 1.65 | | Sodium (Na) | FDS08A
FDS08B
FDS08C | 114000
1960000
1210000 | 59000
1850000
598000 | NL/NL | NL | | Thallium (T) | FDS08A
FDS08B
FDS08C | 4.1
5.8
8.4 | ND
7.3
ND | NL/0.29 | ND | | Vanadium (V) | FDS08A
FDS08B
FDS08C | 22.9
13.1
2.8 | 4.5
6.6
18.1 | NL/26 | 15.4 | | Zinc (Zn) | FDC08A | 36 | ND | NL/1100 | 15.6 | | Area 11 | | | | | | | Volatile Organic Compounds (A | ug/L) | | | | | | Chloromethane | 619003 | 8.0 | ND | NL/T4 | NA. | | Toluene | FDS11C | 1 | ND | 1000/75 | NA | | Semivolatile Organic Compoun | ds (μg/L) | | | | | | Total PAHs | FDS11A
-619003 | i3 / | | 25/NL | NA
Program | | Acenaphthene | FDS11A
619003 | 1.0
2.0 | 2.0
ND | 10/220 | NA | | Fluorene | 619003 | 4.0 | ND ND | 10/150 | W NA | | 2-Methylnapthalene | 619003 | 3.0 | ND | 10/150 | NA | | Naphthalene | 619003 | 2.0 | 1:0 | he 10/150 es en | S', NA | | Analytes Detected in Groundwater | | |----------------------------------|--| | Fuel Distribution System | | | Fuel Distribution System | | | | | | | | |--|--------------------------------------|--|------------------------------------|---------------------------------|-------------------------------|--|--| | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(µg/L) | Shallow
Background | | | | Semivolatile Organic Compounds | (μg/L) | 1100 | | | | | | | Phenanthrene | 619003 | 2.0 | ND | 10/150 | NA NA | | | | Aniline | FDS11C | 5 | NT | NL/1 | NA | | | | Benzoic Acid | FDSUA
FDSUC | 7
ND | ND
19 | NL/15000 | NA. | | | | Dibenzofuran | 619003 | 2.0 | ND | NL/15 | NA | | | | 4-Methylphenol (p-Cresol) | FDS11C
619003 | ND
6.0 | 2.0
ND | NL/18 | ŅĀ | | | | Dioxin (pg/L) | | | 14 101 | | · · · | | | | Dioxin (2,3,7,8-TCDD TEQs ¹) | FDS11C | 0:1694 | NI | NL/0.45 | Piet NA | | | | Inorganics (μg/L) | | • | | | | | | | Aluminin (A) | FDS11A
FDS11B
FDS11C | 209
174
466 | 395
86.2
169 | NL/3700 | 692- | | | | | 619003 | 233 | 10.3 | | | | | | Antimony (Sb) | FDS11A
FDS11B
FDS11C
619003 | 5.1
4.2
4.0
ND | ND
ND
ND
4.9 | NL/1.5 | 4.85 | | | | Arsenic (As) | FDS11A
FDS11C
619003 | 2.9
3.2
3.0 | ND
229 | 50/4:5E-02 | 17.8 | | | | Barium (Ba) | FDS11A
FDS11B
FDS11C | 39.8
68.9
57.8 | 27.9
54
51.1 | 2000/260 | 31 | | | | | 619003 | 92.2 | 69.2 | | livi da kabe Teres | | | | Beryllium (Be) | 619003 | ND | 0.39 | NL/.016 | (ND | | | | Calcium (Ca) | FDS11A
FDS11B
FDS11C
619003 | 101000
93200
125500
205000 | 105000
84500
77800
200000 | NL/NL | NL | | | | Aromium (Cr) | FDS11A
FDS11B
FDS11C | 0,96 (3 d)
0,92 (5 d)
1,1 (5 d) | 1
1 ND
1 ND | 100/18 | 3.88 | | | | | 619003 | 1.0 | | NI COO | | | | | Cobalt (Co) | 619003
FDS11B
FDS11C | ND
3'2.
2.2 | 1.4
NT | NL/220
NL/73 | 1.45
3.8 | | | | ron (Fe) | FDS11A
FDS11B
FDS11C
619003 | 2260
15800
7690
32000 | 2920
17300
7120
17000 | NL/NL | NL | | | # Analytes Detected in Groundwater Fuel Distribution System | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(μg/L) | Shallow
Background | |------------------------------|--------------------------------------|---------------------------------------|--|---------------------------------|-----------------------| | Inorganics (µg/L) | | | | | | | Magnesium (Mg) | FDS11A
FDS11B
FDS11C
619003 | 34000
67900
191500
356000 | 28500
54100
99650
497000 | NL/NL
T | | | Manganese (Mn) | FDS11A
FDS11B
FDS11C
619003 | 300
913
527
1420 | 348
814
500
702 | NL/84 | 2,906 | | Mercury (Hg) | FDSIIC | ND | 0.11 | 2/1.1 | ND | | Nickel (Ni) | FDS11A
FDS11B
FDS11C
619003 | 0.96
3
1
ND | ND
ND
ND
1.5 | NL/73 | 4.08 | | Potassium (K) | FDS11A
FDS11B
FDS11C
619003 | 27300
38200
54050
163000 | 18300
31200
39650
158000 | NE/NE | NL [†] | | Sodium (Na) | FDS11A
FDS11B
FDS11C
619003 | 380000
587000
908000
3840000 | 185000
433000
1030000
4600000 | NL/NL | NL | | Thallium (TI) | 619003 | 6.6 | il. * ND | NL/0.29 | ND. | | Tin (Sn) | FDS11C | 3.3 | ND | NL/2200 | ND | | Yanadium (V) | FDSUA
FDSUB
FDSUC
619003 | 0.67
ND
0.67
ND | PND
ND
ND
7.5 | NL/26 | -15,4 | | Areas 12, 13, & 14 | | | · · · · · · | · . | | | Semivolatile Organic Compoun | ds (μg/L) | | | | | | Total PAHs | FDS13A | 1 | | 25/NL | NA NA | | 2-Methylnaphthalene | FDS13A | 1 | 5 | 10/150 | NA | | 4-Nitrophenol | FDS14A | ND (| | NL/230 | | | Benzoic acid | FDS13A
FDS13B
FDS14A
FDS14B | 2
2
ND
ND | ND
ND
2
1 | NL/15000 | NA | | | An | Analytes Detected in Groundwater Fuel Distribution System | | | | | |-------------------|--------------------|---|-----------------------------|--|----------------------------------|--| | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(μg/L) | Shallow
Background | | | Inorganics (μg/L) | Location | Event | Event | (4g/L) | Dackground | | | Aluminum (Al) | FDS12A | 514 | 288 | NL/3700 | - 692 | | | | FDS12B | ND | 2(3 | | | | | | FDS13A
FDS18B | 1360
787 | 692
74.4 | | | | | | FDS13C | 1730 | 1600 | | | | | | FDS13D | 1850 | 2820 | | | | | | FDS13E
FDS14A | 215
ND | 1290
2940 | | | | | | FDS14B | ND | 201 | | | | | | FDS14C | 738 | 250 | | | | | | GDG002 | 176 | ND | NH // F | 4.05 | | | Antimony (Sb) | FDS13E
GDG002 | 3.4
ND | ND
3.8 | NL/1.5 | 4.85 | | | Arsenic (As) | FDS12A | 6,55 | 22,95 | 50/0.045 | 17.8 | | | | FD\$12B
FD\$13A | 28.
27 | 49.3
210 | | | | | | FDS13B | 5,2 | 16.8 | | | | | | FDS13C | 3.9 | 6 | | | | | | FDS13D
FDS13E | ND
22.5 | 16.7
29.9 | | | | | | FDS14A | 50.3 | 21.8 | | | | | | FDS14B | 6.9 | 22:5 | an Takan da Kabupatèn Manada
Kabupatèn da Kabupatèn Manada | | | | | FDS14C
GDG002 | 14
7.8 | 24.9
10 | | | | | Barium (Ba) | FDS12A | 268 | 196.5 | 2000/260 | 31 | | | | FDS12B
FDS13A | 78.9
138 | 70.4
28.1 | | | | | | FDS13B | 144 | 29.8 | | | | | | FDS13C | 27.3 | 17 | | | | | | FDS13D
FDS13E | 35.6
32.9 | 31.9
30.4 | | | | | | FDS14A | 45.2 | 59.6 | | | | | | FDS14B | 52 | 46.2 | | | | | | FDS14C
GDG002 | 51.5
13.6 | 33.1
17.4 | | | | | Beryllium (Be) | FDS13B | .45 | ND | NL/0.016 | ND. | | | | FDS13C
FDS14C | .53
.64 | ND
ND | | | | | Cadmium (Cd) | FDS12A | ND | .46 | 5/1.8 | 0.53 | | | cadinam (cu) | FDS12B | ND | .52 | 5.1.0 | 0.50 | | | | FDS13A | ND | .44 | | | | | | FDS13C
FDS14A | ND
ND | .68
.31 | | | | | | FDS14B | ND | .41 | | | | | | GDG002 | ND | .4 | | artawa e n i Li era estir | | | Calcium (Ca) | FDS12A
FDS12B | 274500
172000 | 215500
160000 | NL/NL | NL
1 | | | | FDS12B
FDS13A | 161000 | 155000 | | | | | TOTAL TOTAL | FDS13B | 197000 | 1850001 | | | | | | FDS13C
FDS13D | 69800 - 8
8930 | 49400 3580 4 | | | | | | PDS13E | 155000 | 161000 | | | | | | FDS14A | 177000 | 137000 | The state of s | | | | | FDSI4B
FDSI4C | 127000
201000 | 137000
151000 | | | | | | GDG002 | 91400 | 90700 | | | | | Analytes Detected in Groundwater Fuel Distribution System | | | | | |
---|--------------------|----------------------------|---|---------------------------------|------------------------| | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(μg/L) | Shallow
Background | | Inorganics (µg/L) | <u> </u> | Event | Diene | Ψς, Σ, | - Mengi valio | | Chromium (Gr) | FDS12A | 12 | ND: | 100/18 | 3.88 | | | FDS12B | .82 | ND | | | | | FDS13A | 4.2 | 159 | | | | | FDS13B
FDS13C | 2.6
1.3 | 2.9 | | | | | FDS13D | 3.6 | 5.3 | | | | | FDS13E | ND | 3.3 | | | | | FDSJ4A
FDSJ4B | 2
4.3 | 9.6
2.8 | | | | | FDS14C | 1.4 | 2.4 | | | | Cobalt (Co) | FD\$12A | 17.85 | 18.7 | NL/220 | 1.45 | | | FDS12B
FDS13A | 31
4 ,1 | 29.6
ND | | | | | FDS13A
FDS13B | 3.1 | 1.9 | | | | | FDS13C | 29 | 23.4 | | | | | FDS13D | 3.4 | 1.4 | | | | | FD\$14A
FD\$14B | 1.9
3 | 2.1
1.6 | | | | | FDS14C | 1.6 | .98 | | | | Copper (Cu) | FDS13A | 5.2 | ND. | NL/13000 | 8.33 | | | FDS13B | ND | 2.2 | | | | | FDS13D
FDS14A | ND
ND | 1.8
3.7 | | | | | FDS14B | 3.8 | ND | | | | | FDS14C | 5 | ND | | | | Cyanide (CN) | FDS13E | 2.6 | NT | NL/73 | 3.8 | | | FD\$14B
FD\$14C | 2.2
8.4 | NT
NT | | | | Iron (Fe) | EDS12A | 10800 | 19850 | NL/NL | L PANELOGIA | | | FDS12B | 18500 | 32200 | | | | | FDS13A | 14700 | 37200 | | | | | FDS13B
FDS13C | 2110
73800 | 9150
64500 | | | | | FDS13D | 4640 | 8280 | | | | | FDS13E | 10700 | i 19000 | | | | | FDS14A
FDS14B | 20100
4240 | 15600
25600 | | | | Lilla Carrier | FDS14C | 2830 | TO THE WAY OF THE PARTY | | 新生产的1980年
新生产的1980年 | | | GDG002 | 28200 | 35700 | | | | Lead (Pb) | FD\$13A | ND | 1 | 15/15 | 4.6 | | | FDS13D
FDS13E | ND | 1,9
1.3 | | | | | FDS14A | ND
ND | 3. 5 | | | | Magnesium (Mg) | FDS12A | 58000 | 53400 | NL/NL | NL NL | | | FDS12B | 106000 | 112000 | | | | | FDS13A
FDS13B | 203000
428000 | 75700
214000 | | | | Active to the second | FDS13C | 153000 | 113000 | | Arts 1 for the | | | FDS13D | 6130 | · 2730 | | | | | FDS13E | 131000 | 137000
281000 | | of A. Carlotta | | | FDS14A
FDS14B | 257000
266000 | 217000 | 即是那种物化为3。 | | | | PDS14C | 170000 | 197000 | | | | (1977) (1977) [1974] [1974] [1974] [1974] [1974] [1974] [1974] [1974] [1974] [1974] [1974] [1974] [1974] [1974] | GDG002 | 100000 | 81000 | 图 理論。 计人员 500 净能 | estation of the | | | An | alytes Detected in G
Fuel Distribution | | | | |-----------------------------------|------------------|---|-----------------------------|---------------------------------|---------------------------| | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(μg/L) | Shallow
Background | | Inorganics (μg/L) | | | | | | | Manganese (Mn) | FDS12A | 3650 | 3180 | NL/84 | 2906 | | | EDS12B
FDS13A | 3370
1370 | 3240
2480 | | | | | FDS13B | 286 | 292 | | | | | FDS13C | 1680 | 1300 | | | | | FDS13D | 163.
1540 | 73.7
1660 | | | | | FDS13E
FDS14A | 607 | 354 | | | | | FDS14B | 329 | 405 | | Markey Stephen | | | FDS14C | 3360 | 1510 | | | | | GDG002 | 2630 | 2820 | | | | Nickel (Ni) | FDS12A
FDS12B | 9.2
9.6 | 4.85
6.2 | NL/73 | 4.08 | | | FDS13A | 11 | ND | | | | | FDS13B | 7.7 | 4 | | | | | FDS13C | 10.5 | 7.9 | | | | | FDS13D
FDS13E | 4.8
.94 | 2.2
.82 | | | | | FDS14A | ND | 4.8 | | | | | FDS14B | 7.7 | 1.4 | | | | | FDS14C | ND | 2.3 | | | | and the second second | GDG002 | 2 | ND | NL/NL | | | Potassium (K) | FDS12A
FDS12B | 7140
41200 | . 5935
43900 | NUNL | NL. | | | FDS13A | 75200 | 42100 | | | | The the specific the Englishing s | FDS13B | 123000 | 86500 | | | | | FDS13C | 40300 | ÷30300 | | | | | FDS13D
FDS13E | 3610.
57400 | 2910
67000 | | | | | FDS14A | 91500 | 109000 | | | | | FDS14B | 90000 | 81600 | | | | | FDS14C
GDG002 | 63100
46400 | 94300
49800 | | | | Selenium (Se) | GDG002 | ND | 4.1 | 50/18 | 4.3 | | Silver (Ag) | GDG002 | 1.7 | ND. | 5/18 | 1.65 | | Sodium (Na) | FD\$12A | 427000 | 388000 | NL/NL | NL | | , , | FDS12B | 876000 | 1010000 | | | | | FDS13A | 1850000 | 425000 | | | | | FDSI3B
FDS13C | 3860000
1620000 | 2080000
1260000 | | | | | FDS13D | 163000 | 104000 | | | | | FDS13E | 538000 | 795000 | | | | | FDS14A | 1970000 | 2510000 | | | | | FDS14B
FDS14C | 2240000
1030000 | 2020000
1750000 | | | | | GDG002 | 694000 | 576000 | | | | Thallium (TI) | FDS12A | 4.5 | ND | NL/0.29 | , ND | | | FDS12B
FDS13A | 24
5.74 | | | | | | FDS13B | 714 | ND + | | | | | FDS13D | 4.2,** | ND . | E. Carak | And District | | | FDS14A
FDS14B | 3.5 | , ND
ND | A second | | | TO THE REAL PROPERTY. | FDS14C | 19 (npet), 10 c - 27 | M | | Service The Property Con- | | Analytes Detected in Groundwater | • | |----------------------------------|---| | Fuel Distribution System | | | Fuel Distribution System | | | | | | | | |---------------------------------|--|--|---|---------------------------------|---|--|--| | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(μg/L) | Shallow
Background | | | | Inorganics (μg/L) | | | | | | | | | Vanadrum (V) | FDS12A
FDS13A
FDS13B
FDS13C
FDS13D
FDS13E
FDS14A
FDS14B | 1 35
4.7
9:1
1 6
3 7
3 7
5 | \$10.5
20.5
2.9
6:1
5:3
20:2
13:2 | NI-28 | 15.4 | | | | | FDS14C | 5.4 | 17.3 | | | | | | Zinc (Zn) | FDS12A
FDS12B
FDS13A
FDS13C
FDS13D
FDS14A | 2.7
ND
ND
ND
ND
ND
ND | 3.1
8.4
16.3
7.8
21.7
12.9
10.4 | NL/1100 | 15.6 | | | | Area 15 | | | | | | | | | Volatile Organic Compounds (μg/ | L) | | | | | | | | Toluene | FDS15A | 3 | ND* | 1000/75 | NA | | | | Chlorobenzene | FDS15A | 6 | ND | NL/3.9 | NA | | | | Semivolatile Organic Compounds | (μ g / L) | | | | | | | | Phenol | FDS15A | | ND | NL/2200 | NA T | | | | 4-Methylphenol (p-cresol) | FDS15A | 23 | 2 | NL/18 | NA | | | | Benzoic acid | FDS15A | 6. | ND: | NL/15000 | Maria NA | | | | Pesticides/PCBs (µg/L) | | | | | , | | | | peta-BHC | EDS15A | 0.057 | ND | NĽ/0.037 | NA . | | | | norganics (μg/L) | | | | | | | | | Aluminum (Al) | FDS15A
FDS15B
FDS15C | 100
3,010
962 | 503
209
474 | NL/3700 | 692 | | | | Antimony (Sb) | FDS15C | 3.5 | ND | NL/1.5 | 4.85 | | | | Arsenic (As) | FDS15A
FDS15B | 19.4
4.1 | 1926.7
14.67 | 50/0.045 | 17.8 | | | | Barium (Ba) | FDS15A
FDS15B
FDS15C | 55.2
68.6
159 | 94.5
70.6
153 | 2000/260 | 31 | | | | Calcium (Ca) | FDS15A
FDS15B
FDS15C | 126000
98800
268000 | 235000
1119000
284000 | NINE | NL
college | | | | Chromium (Cr) | FDS15A
FDS15B
FDS15C | 0.92
4.7
1.9 | 1.5
ND
ND | 100/18 | 3.88 | | | | Analytes Detected in Groundwater Fuel Distribution System | | | | | | | |---|----------------------------|----------------------------|------------------------------|---------------------------------|-----------------------|--| | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(µg/L) | Shallow
Background | | | Inorganics (µg/L) | | | | | | | | Cobalt (Co) | FDS15B
FDS15C | 81 | G
G
D
D | NL/220 | met 43.45 | | | Copper (Cu) | FDS15A | 3.6 | ND | NL/13000 | 8.33 | | | Cyanide (CN) | FDS15A
FDS15B | 3
7 | NT
NT | NL-73 | 3.8 E N | | | Iron (Fe) | FDS15A
FDS15B
FDS15C | 4920
2060
1920 | 6620
675
3040
| NL/NL | NL | | | Magnesum (Mg) | FDS15A
FDS15B
FDS15C | 12200
26200
19300 | 15800
22800
14000 | NEW 32 has | garangan sa | | | Manganese (Mn) | FDS15A
FDS15B
FDS15C | 721
1050
806 | 515
813
465 | NL/84 | 2906 | | | Nickel (Ni) | FDS15A
FDS15B
FDS15C | 3.7 | 0.84
1.6
0.9 | NL/73 | 4:08 | | | Potassium (K) | FDS15A
FDS15B
FDS15C | 10800
7410
3440 | 5130
8050
3450 | NL/NL | NL | | | Sodium (Na) | FDS15A
FDS15B
FDS15C | 78300
92400
117000 | 157000 =
158000
114000 | NLAL | Ar. | | | Thallium (Tl) | FDS15C | 3.3 | ND | NL/0.29 | ND | | | Variatium (V) - Marine - 1988 | FDS15A
FDS15B
FDS15C | 1.3
6
1.9 | 1.6
1.1
1.6 | NL26 | 15.4 | | NL = Not listed NA = Not applicable ND = Not detected NT = Not taken μ g/L = Micrograms per liter pg/L = Picograms per liter Calculated from methods described in USEPA Interim Supplemental Guidance to RAGS: Human Health Risk Assessment, Bulletin 2 (USEPA, 1995). RBSLs from the South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC, January 5, 1998) and tap water RBCs (THQ=0.1) from Risk Based Concentration Table (USEPA, October 22, 1997) were used as reference concentrations. Bolded concentration exceed RBSL or the Tap Water RBC (if no RBSL is available). All background values for Zone G are based on twice the means of the grid sample concentrations. Background values for groundwater are based on two sampling rounds in two wells at each depth. | | DPT Soil and Groundwater Samples and Analyses | | | | | | |-----------------|---|--|--------------------|--|--|--| | Sample Location | Sample Identifier | Medium | Date Collected | Analyses | | | | Area 19 | | | AD | | | | | - P001 | F19SP00106
F19GP00101 | Soil
Groundwater | 1/21/99
4/12/99 | Vocs, svocs | | | | P002 | F19SP00205
F19GP00201 | Soil
Groundwater | 1/21/99
4/12/99 | VOCs, SVOCs | | | | P003 | F19SP00305
F19GP00301 | Soil
Groundwater | 1/21/99
4/12/99 | VOCs, SVOCs | | | | P004 | F19SP00406
F19GP00401 | Soil
Groundwater | 1/22/99
4/12/99 | VOCs, SVOCs | | | | P005 | F19SP00505
F19GP00501 | Soll
Groundwater | 1/21/99
4/12/99 | Yocs, svocs | | | | P006 | F19SP00604 | Soil | 1/21/99 | VOCs, SVOCs | | | | P007 | F19SP00706 | Soil | 1/21/99 | VOCs, SVOCs | | | | P009 | F19SP00909
F19GP00901 | Soil
Groundwater | 5/07/99
5/10/99 | VOCs, SVOCs | | | | P010 | F19SP01005
F19GP01001 | Soil
Groundwater | 5/07/99
5/10/99 | VOCs SVOCs | | | | P011 | F19SP01105
F19GP01101 | Soil
Groundwater | 5/07/99
5/10/99 | VOCs, SVOCs | | | | P012 | F19SP01205
F19GP01201 | Soil
Groundwater | 5/07/99
5/10/99 | VOCs, SVOCs | | | | P013 | F19SP01311
F19GP01301 | Soil
Groundwater | 6/23/99
6/24/99 | VOCs, SVOCs | | | | P014 | F19SP01407
F19GP01401 | Soil Groundwater | 6/23/99
6/24/99 | VOCs SVOCs | | | | P015 | F19SP01507
F19GP01501 | Soil
Groundwater | 6/23/99
6/28/99 | VOCs, SVOCs | | | | P016 | F19SP01611
F19GP01601 | Soil
Groundwater | 6/23/99
6/28/99 | VOCs, SVOCs | | | | P017 | F19SP01711
F19GP01701 | Soil
Groundwater | 6/23/99
6/28/99 | VOCs, SVOCs | | | | P018 | F19SP01811
F19GP01801 | Soil
Groundwater | 6/23/99
6/28/99 | VOCs, SVOCs | | | | P 019 | F19SP01912
F19GP01901 | Soil
Groundwater | 6/23/99
6/28/99 | VOCs, SVOCs | | | | P020 | F19SP02010.
F19GP02001 | Soil 1 and 6 | 6/23/99
6/28/99 | Vocs syocs | | | | Area 20 | | | | | | | | P001 | P20SP00[11
F20GP00[01 | Soil
Groundwater | 1/22/99
1/29/99 | * VOCs, SVOCs +
VOCs, SVOCs, Metals | | | | P002 | F20SP00206
F20GP00201 | Soil
Groundwater | 1/22/99
1/29/99 | VOCs, SVOCs
VOCs, SVOCs, Metals | | | | DPT Soil and Groundwater S | Samples | and Analy | ses | |----------------------------|---------|-----------|-----| |----------------------------|---------|-----------|-----| | Sample Location | Sample Identifier | Medium | Date Collected | Analyses | |-----------------|--------------------------|---------------------|-----------------------------|------------------------------------| | P003 | F20SP00308
F20GP00301 | Soil
Groundwater | 1/22/99
1/29/99 | VOCs, SVOCs
VOCs, SVOCs, Metals | | P004 | F20SP00403
F20GP00401 | Soil
Groundwater | 1/29/99
1/29/99 | VOCs, SVOCs
VOCs, SVOCs, Metals | | P005 | F20SP00511
F20GP00501 | Soil
Groundwater | 1/26/99
1/29/99 | VOCs, SVOCs
VOCs, SVOCs, Metals | | P006 | F20SP00606
F20GP00601 | Soil
Groundwater | 1/2 7 /99
1/29/99 | VOCs, SVOCs
VOCs, SVOCs, Metals | | P007 | F20SP00719 | Soil | 1/26/99 | VOCs, SVOCs | | P008 | F20GP00801 | Groundwater | 1/29/99 | VOCs, SVOCs, Metals | | P009 | F20SP00921 | Soil | 1/27/99 | VOCs, SVOCs | | P010 | F20SP01002 | Soil | 1/27/99 | VOCs, SVOCs | | P012 | F20SP01210 | Soil | 1/27/99 | VOCs, SVOCs | | P013 | F20SP01309 | Soil | 1/27/99 | VOCs, SVOCs | | P014 | F20SP01404 | Soil | 1/28/99 | VOCs, SVOCs | | P015 | F20SP01509 | Soil | 1/28/99 | VOCs, SVOCs | | P016 | F20SP01609 | Soil | 1/28/99 | VOCs, SVOCs | | P017 | F20SP01709 | Soil | 1/27/99 | VOCs, SVOCs | | P018 | F20GP01801 | Groundwater | 5/07/99 | VOCs, SVOCs | | P019 | F20SP01906
F20GP01901 | Soil
Groundwater | 5/07/99
5/07/99 | VOCs, SVOCs | | P020 | F20SP02006
F20GP02001 | Soil
Groundwater | 5/07/99
5/07/99 | VOCs, SVOCs | | P021 | F20SP02106 | Soil | 5/07/99 | VOCs, SVOCs | | P022 | F20SP02204
F20GP02201 | Soil
Groundwater | 5/07/99
5/10/99 | VOCs, SVOCs | | P023 | F20SP02307 | Soil | 5/07/99 | VOCs, SVOCs | | P024 | F20SP02407
F20GP02401 | Soil
Groundwater | 5/07/99
5/10/99 | VOCs, SVOCs | | P025 | F20SP02505
F20GP02501 | Soil
Groundwater | 5/07/99
5/10/99 | VOCs, SVOCs | | P026 | F20SP02608
F20GP02601 | Soil
Groundwater | 5/07/99
5/10/99 | VOCs, SVOCs | | P027 | F20SP02708
F20GP02701 | Soil
Groundwater | 5/07/99
5/11/99 | VOCs, SVOCs | | P028 | F20GP02801 | Groundwater | 5/11/99 | VOCs | | P029 | F20SP02907
F20GP02901 | Soil
Groundwater | 5/07/99
5/11/99 | VOCs, SVOCs | | P030 | F20SP03005
F20GP03001 | Soil
Groundwater | 5/07/99
5/11/99 | YOCS, SYOCS | #### **DPT Soil and Groundwater Samples and Analyses** Sample Identifier Medium Date Collected Sample Location Analyses P031 Groundwater F20GP03101 VOCs, SVOCs 6/24/99 VOCs, SVOCs P032 F20GP03201 Groundwater 6/24/99 VOCs 6/24/99 P033 F20GP03301 Groundwater Notes: Sample P008 was not collected Sample P011 was not collected Semivolatile Organic Compounds Volatile Organic Compounds SVOCs VOCs | | Summary | of DPT Soil Analytica
Subsurface | Groundwater | Exceeds Groundwater |
--|-------------------------------|-------------------------------------|-----------------------------------|---------------------| | Parameters | Location | Conc. | Protection RBSL | Protection RBSL | | Area 19 | | | | | | Volatile Organic Compounds (4 | ₄g/kg) | | | | | Benzene | F19SP006 | 3 | | Yes | | | F19SP012
F19SP013 | 18
26 | | Yes
Yes | | Ethylbenzene | F19SP006 | 83 | 1,260 | No | | , | F19SP012 | 7,700 | 1,200 | Yes | | | F19SP013
F19SP014 | 38
2 | | No
No | | | F19SP015 | 300 | | No | | Xylene (Total) | F19SP006 | 12 | 42,471 | No | | Line of Figure 1912 | F19SP012 | 780 | | No. | | | F19SP014
F19SP020 | | | No
No | | Semivolatile Organic Compoun | ds (μg/kg) | | | | | Total Naphthalenes | F[9SP001 | 450 | 210 | Yes | | | F19SP006 | 3,000 | | Yes
Yes | | | F19SP012
F19SP013 | 159,855
93,000 | | Yes | | | F19SP014 | 6,800 | | Yes | | | F19SP015
F19SP016 | 7,100
1,080 | | Yes
Yes | | | F19SP020 | 10,300 | | Yes | | 2-Methylnaphthalene | F19SP01205 | 112,855 | NL | NA | | | F19SP013
F19SP014 | 75,000
6,800 | | | | | F19SP015 | 5,700 | | | | | F19SP016
F19SP020 | 920
1,200 | | | | Naphthalene | e in the second of the second | in the state of | -210 | | | Naphinalene | F19SP001
F19SP006 | 450
3,000 | -210
 | Yes
Yes | | | F19SP012 | 47,000 | | Yes | | | F19SP013
F19SP015 | 18,000 | | Yes | | | F19SP016 | 1,400
160 | | No | | | F19SP020 | 9,100 | | Yes | | Benzo(a)anthracene | F19SP001 | 140 | 73,084 | No | | | F19SP004
F19SP006 | 6,300
1,900 | | No
No | | | F19SP009 | 75 | | No | | | F19SP010 | 56
570 | | No
No | | | F19SP012
F19SP013 | 570
600 | | No
No | | and the second of o | F19SP014 | 2,100 | 1179 May of 1986 and a 17 Million | No. | | Benzo(a)pyrene | F195P014 | 2,400 | The New York | ANTA TO | | Benzo(b)fluoranthene | F19SP001 | 110 | 29,097 | No | | | F19SP004
F19SP006 | 5,500
1,800 | | No
No | | | F19SP009 | 62 | | No | | | F19SP010 | 58
390 | | No
No | | | F19SP012
F19SP014 | 2,500 | | No
No | | | Summary | of DPT Soil Analytica | al Results | | |--|----------------------|--
--|--| | Parameters | Location | Subsurface
Conc. | Groundwater
Protection RBSL | Exceeds Groundwater
Protection RBSL | | Semivolatile Organic Compound | s (μg/kg) | | | | | Benzo(g,h,i)perylene | F19SP014 | 940 | NL | NA | | Benzo(k)fluoranthene | F19SP001 | 120 | 231,109 | No | | | F19SP004 | 5,600 | | No | | | F19SP006
F19SP009 | 2,000
54 | | No
No | | | F19SP010 | 54
66 | | No | | | F19SP014 | 2,400 | | No | | Chrysene | F19SP001 | 240 | 12,998 | No | | | F19SP004 | 6,300 | | No | | The second secon | F19SP006 | 3,200 | | No | | | F19SP009 | 120 | | No | | and the same and the same and the | F19SP010 | 71 | | No | | | F19SP012 | 1,200 | | No | | | F19SP013
F19SP014 | 1,100
3,000 | | No
No | | Acenaphthene | F19SP020 | 1,900 | NL | NA | | Anthracene | F19SP014 | 910 | NL | NA NA | | Dibenzofuran | F19SP020 | 790 | NL NL | NA | | NA CALL STORY | Control Williams | 1.04 | NL NL | NA | | Fluoranthene | F19SP014
F19SP020 | 4,900
160 | | | | Fluorene | F19SP013 | 7,100 | NL | NA | | | F19SP014 | 1,600 | | | | | F19SP015 | 720 | | | | | F19SP016
F19SP020 | 150
880 | | | | Indeno(1,2,3-cd)pyrene | F19SP014 | 1,000 | NL | NA | | Phenanthrene | F19SP013 | 14,000 | NL | NA | | | F19SP014 | 5,700 | | | | | F19SP015 | 1,200 | | | | | F19SP020 | 1,300 | onia Mary Laboratorio (11) | Constants No. 40 | | Pyrene | F19SP014
F19SP020 | 5,900
100 | NL | NA . | | bis(2-ethylhexyl)phthalate | F19SP015 | 25 | NL | NA | | | F19SP016 | 23 | | | | Area 20 | | | | *** | | Volatile Organic Compounds (με | g/kg) | The second secon | and the state of t | a bearing a property service of the | | Benzene | F20SP014
F20SP023 | 38
3 | 5 * | No. | | Ethylbenzene | F20SP014
F20SP024 | 11
1 | 1,260 | No
No | | Toluene | F20SP014 | 1230 | 1,622 | is s. No | | | F20SP021
F20SP030 | 2. | | No
No | | Xylene (Total) | F20SP001 | 1 | 42,471 | No | | , (| F20SP014 | 13 | , • • • | No | | | F20SP023 | 5 | | No | | | Summary | of DPT Soil Analytica | d Results | | |--|----------------------------------|--------------------------------|--|--| | Parameters | Location | Subsurface
Conc. | Groundwater
Protection RBSL | Exceeds Groundwater
Protection RBSL | | Semivolatile Organic Compound | ls (μg/kg) | | | | | Total Naphthalenes | F20SP001
F20SP003
F20SP012 | 390
76
171 | 210 | 7es. | | | F20SF014
F20SF015
F20SF017 | 41.012
79
664 | | Yes
No | | | F20SF019
F20SF020
F20SF023 | 624
56 | | Yes
No | | | F20SP024
F20SP029
F20SP030 | 600
95
89 | | No
No | | Naphthalene | F20SP001
F20SP003 | 390
76 | 210 | Yes
No | | | F20SP014
F20SP015 | 4,000
79 | | Yes
No | | | F20SP017
F20SP020
F20SP023 | 260
30
660 | | Yes
No
Yes | | | F20SP024
F20SP029
F20SP030 | 600
29
43 | | Yes
No
No | | 2-Methylnaphthalene | P20SP012
F20SP014 | 1712
37,012 | | | | ATRICAL TO A STATE OF THE | F20SP015
F20SP017
F20SP019 | 121
344
624 | and the state of t | | | | F20SP020
F20SP029
F20SP030 | 26
66
46 | | | | Benzo(a)anthracene | F20SP001
F20SP003 | 1,900
580 | 73,084 | No
No | | | F20SP004
F20SP005 | 60
120 | | No
No | | | F20SP006
F20SP012 | 100
190 | | No
No | | | F20SP014
F20SP015
F20SP016 | 220
660
1,200 | | No
No
No | | | F20SP017
F20SP019 | 3,900
220 | | No
No | | | F20SP020
F20SP021 | 210
200 | | No
No | | | F20SP022
F20SP023 | 160
170 | | No
No
No | | | F20SP024
F20SP025
F20SP027 | 40
120
35 | | No
No
No | | | F20SP029
F20SP030 | 95
200 | | No
No | | Summary of DPT Soil Analytical Results | | | | | | | |
--|--|---|--------------------------------|---|--|--|--| | Parameters | Location | Subsurface
Conc. | Groundwater
Protection RBSL | Exceeds Groundwater Protection RBSL | | | | | Semivolatile Organic Compound | ls (μg/kg) | | | | | | | | Benzo(b)/huoranthene | F20SP001 F20SP001 F20SP003 F20SP004 F20SP005 F20SP006 F20SP012 F20SP014 F20SP015 F20SP016 F20SP017 F20SP017 F20SP020 F20SP021 F20SP022 F20SP022 F20SP023 F20SP023 F20SP024 F20SP025 F20SP027 F20SP027 F20SP029 | 730,
710
60,
95,
95,
48,
220,
790,
1,200,
3,000,
100,
100,
140,
79,
46,
110,
110,
140,
79,
46,
110, | 29,097 | No
No
No
No
No
No
No
No
No
No
No
No
No
N | | | | | Benzo(k)fluoranthene | F20SP030 F20SP001 F20SP003 F20SP004 F20SP005 F20SP006 F20SP012 F20SP014 F20SP015 F20SP016 F20SP017 F20SP020 F20SP021 F20SP021 F20SP022 F20SP023 F20SP023 F20SP024 F20SP025 F20SP027 F20SP029 F20SP030 | 590
560
43
73
81
57
140
720
920
2,800
110
110
140
53
30
120
29
85 | 231,109 | No N | | | | | Chrysene Section 1997 Sectio | F20SP001 F20SP003 F20SP004 F20SP005 F20SP006 F20SP012 F20SP013 F20SP014 F20SP015 F20SP016 F20SP016 F20SP017 F20SP017 F20SP019 F20SP020 F20SP021 F20SP022 F20SP023 F20SP023 F20SP023 F20SP023 F20SP025 F20SP027 F20SP029 F20SP030 | 170 3,200 1,000 1,000 180 220 180 250 52 410 1740 1,200 1740 200 200 2100 2100 2100 2100 2100 2100 | 12.998 | NO TO | | | | Notes: NL = Not listed NA = Not applicable µg/kg = Micrograms per kilogram RBSLs for groundwater protection from the South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC, January 5, 1998) were used as reference concentrations. Bolded concentrations exceed RBSLS. | | Summary of DPT Grou | undwater Analytical Results | | | |-------------------------------|----------------------------------|---|-----------------------|------------------| | Parameters | Location | Concentration | RBSLs | Exceeds RBSL | | Area 19 | | | | | | Volatile Organic Compounds (| μg/L) | | | and the second | | Benzene | F19GP009
F19GP013
F19GP014 | 8
32
2 | 5 | Yes
Yes
No | | Ethylbenzene | F19GP001 | 1 | 700 | No | | | F19GP012
F19GP013 | 44
40 | | No
No | | Kylene (Total) | F19GP012 | 2 | 10,000 | No | | | F19GP013
F19GP015 | 13
2 | | No
No | | Semivolatile Organic Compour | | | | | | Total PAHs | F19GP004 | 2.8 | 25 | No | | | F19GP009
F19GP010 | 46
2.4 | | Yes
No | | | F19GP011 | 78 | | No | | | F19GP012
F19GP013 | 354;216
5305 | | Yes
Yes | | en a subject to | F19GP014
F19GP015 | 133 | | Yes | | | F19GP016 | 1,551
161 | | Yes
Yes | | | F19GP017 | | | No No | | 7 | F19GP018
F19GP019 | 41
22 | | Yes
No | | | F19GP020 | 464 | | Yes | | 2-Methylnaphthalene | F19GP009 | 43.6 | 10 | Yes | | | F19GP010
F19GP011 | 1.58
4.84 | | No
No | | | F19GP012 | 260,816 | | Yes | | | F19GP013
F19GP014 | 190
130 | | Yes
Yes | | | F19GP015 | 1,300 | | Yes | | | F19GP016 | 140 | | Yes | | | F19GP017
F19GP018 | 7
5 | | No
No | | | F19GP019 | 10 | | Yes | | to temperature and the second | F19GP020 | 15 | carto das officios de | Yes | | Naphthalene | F19GP009 | 2 | 10 | No | | | F19GP010
F19GP011 | 0.8 | | No
No | | | F19GP012 | 91,000 | | Yes | | | E19GP013 | 100 | | Yes | | | F19GP015
- F19GP016 | 240
18 | | Yes
Yes | | | F19GP018 | 16 | | Yes | | | F19GP019
F19GP020 | 12 440 | | Yes. | | ,4-Dimethylphenol | F19GP020 | 12 | NL | NA | | Benzo(a)anthracene | F19GP013 | | 10 | No - | | | F19GP014 | | | No | | | F19GP016 | | | No. | | | F19GP020 | 7 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 的分类不是是 | No | # Summary of DPT Groundwater Analytical Results | Parameters | Location | Concentration | RBSLs | Exceeds RBSL | |--|----------------------
--|---|-----------------------| | Semivolatile Organic Compounds (µg | g/L) | | | | | Benzo(a)pyrene | F19GP013 | 1. 2 | NL | NA. | | 表表現為語彙表演的問題的
第125章 第125章 第 | F19GP014 | 0.6 | | | | 中,并不是自己和自己的主要的特殊的一个数 | F19GP018 | | | | | Benzo(b)fluoranthene | F19GP004 | 0.8 | 10 | No | | | F19GP013 | 2 | | No
No | | | F19GP016
F19GP018 | 0.7
2 | | No
No | | | F19GP020 | 2 | | No | | Benzo(k)fluoranthene | F19GP004 | | 10 | No | | | F19GP018 | | | No | | | F19GP020 | 2 | 等2017年2月1日
1017年 - 1017年 | No | | Benzo(g,h,i)perylene | F19GP013 | 0.8 | NL | NA | | Chrysene | F19GP004 | The state of s | 10 | No.* | | | F19GP012 | 2,400 | | Yes | | | F19GP013 | 8 | を加え、124m スプターの
2007年 - 2007年 - 1000年 10000 | [®] No | | [[[하는 1]] 사람들은 [[발명] [[[[]] [[] | F19GP014 | | | No | | 그는 사람들이 생각하고 하시아 보다는 것이다.
 | F19GP015
F19GP016 | 11 | | Yes
No | | | F19GP018 | | | No. | | | F19GP020 | 3 | | No | | Acenaphthene | F19GP013 | 24 | NL | NA | | | F19GP014 | 8 | | | | | F19GP018
F19GP019 | 42
15 | | | | | F19GP020 | 32 | | | | Anthracene | F19GP018 | 10 | NL | NA | | | F19GP019 | | | San Allendar | | | F19GP020 | 3 | | | | Dibenzofuran | F19GP013 | 22 | NL | NA | | | F19GP014 | 8 | | | | | F19GP015
F19GP018 | 42
17 | | | | | F19GP019 | 5 | | | | | F19GP020 | 11 | | | | Fluoranthene | F19GP013 | | NL . | NA NA | | the state of s | F19GP014 | his in the second | | and the second second | | TO THE RESERVE OF THE PARTY | F19GP018
F19GP019 | 2 | | A Desirable of the | | | F19GP019
F19GP020 | 6 | | Page 13 | | The same | * = * | | NIT | NA | | Fluorene | F19GP013
F19GP014 | 40
16 | NL | NA | | | F19GP015 | 130 | | | | | F19GP016 | 20 | | | | | F19GP017 | 2 | | | | | F19GP018
F19GP019 | 24
7 | | | | | F19GP020 | 14 | | | | Parameters | Location | Concentration | RBSLs | Exceeds RBSL | |--|--
--|--|---| | Semivolatile Organic Compounds (| μg/L) | | | | | Phenanthrene | F19GP013 | 73 | NL | NA | | | F19GP014 | 28 | | | | | F19GP015 | 240 | yer a system of the state th | | | | F19GP016 | 26
2 | | | | | F19GP017
F19GP018 | 48 | | | | | F19GP019 | 6 | | | | | F19GP020 | 20 | | | | Phenol | F19GP013 | 1 | NL | NA | | Pyrene | F19GP013 | 9 | NL NL | NA NA | | | F19GP014 | 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - | | | | 들었다. 그리고 바닷물에 시간했다. | F19GP016 | 3 | | | | | F19GP018 | COP IO | | | | | F19GP020 | | | 等在分數學的過程的 | | Bis(2-ethylhexyl)phthalate | F19GP013 | 3 | NL | NA | | | F19GP014 | 5 | | | | | F19GP016
F19GP017 | 1 2 | | | | | F19GP018 | 0.70 | | | | | F19GP019 | 1 | | | | | F19GP020 | 2 | | | | Area 20 | **** | | | | | Volatile Organic Compound (µg/L) | | A Landon Company | | righter and accompanying | | Benzene | F19GP005 | 2 | 5 | No. | | Ethylbenzene | F19GP005 | 5 | 700 | No | | n sala distribution | F19GP008 | .
 | | No
De angles and and a | | Coluene | F19GP005 | | 1,000 | No | | Xylene (Total) | F19GP005 | 21 | 10,000 | No | | | F19GP008 | 10 | | No | | | F19GP024 | 4 | | No | | Semivolatile Organic Compounds (| μg/L) | en kasarti itarahisi samara bendikukanan hisioto at eserti sa | a who a latter of the office of | 2000年 · 1000年 | | Total PAHs | F20GP001 | | 25 | No
No | | | F20GP002
F20GP003 | TO TO | | No | | To be a second of the o | F20GP004 | 114 (0) V: 3 | A CANADA SALA SALA SALA SALA SALA SALA SALA S | No | | | F20GP005 | 3 | | Yes | | 。
一直,是一直,他们就是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个 | | Constitution of the Consti | Later Malain Joseph | No No | | Total PAHs | F20GP006 | and the state of t | 1.00 | | | | F20GP006
F20GP008 | 1,438 | | Yes | | | F20GP006
F20GP008
F20GP018 | 7 | | No | | | F20GP006
F20GP008
F20GP018
F20GP022
F20GP024 | 7
3 | | No
No | | | F20GP006
F20GP008
F20GP018 | 7 | | No | | | Summary of DPT Grou | undwater Analytical Results | | |
---|--|--|--|--| | Parameters | Location | Concentration | RBSLs | Exceeds RBSL | | Semivolatile Organic Compounds | s (μg/L) | | | | | 2-Methylnaphthalene | F20GP001 | | 10 | Yes | | | P20GP003
F20GP004 | 96
10.9 | | No
Yes | | | F20GP005 | 32.6 n | | Ves Yes | | | F20GP006
F20GP008 | .34
.507, III | | No. | | | F20GP018 | 053 | Adama in the second of sec | No | | | F20GP019
F20GP020 | 6 3 | | No
No | | Anger and | P20GP022 | | | No | | | F20GP024 | L | | Yes | | Naphthalene | F20GP001
F20GP002 | 1 | 10 | No
No | | | F20GP003 | 3 | | No | | | F20GP004
F20GP005 | 6
16 | | No
Yes | | | F20GP006 | 5 | | No | | | F20GP008
F20GP018 | 780
0.60 | | Yes
No | | | F20GP022 | 1 | | No | | | F20GP024 | 9
 | | No | | Benzo(a)anthracene | F20GP003
F20GP005 | 2 | 1033 | No. | | luid salgades | F20GP008 | - 55 | | Ϋ́ς | | | F20GP018
F20GP024 | 2 | | No No | | | F20GP025 | Î | | Yes | | | F20GP031 | | | No | | Benzo(a)pyrene | F20GP031 | 4
#################################### | NL
Secretal Largers | No
corecumante | | Benzo(b):fluorantherie | F20GP003 | | 10 | No. | | | F20GP005
F20GP008 | 26 7 | | No
Yes | | personal filtred | F20GP018
F20GP024 | | JABY SUBSTRACTOR | No
No | | | F20GP025 | 10 | | i No-+ | | | F20GP031 | 4 | | · · · No | | Benzo(k)fluoranthene | F20GP008
F20GP018 | 20
0.50 | 10 | Yes
No | | | F20GP018 | 0.90 | | No | | | F20GP025
F20GP031 | 6
3 | | No
No | | | Section of the sectio | 1900 | | eta da Elektronia | | Benzo(g,h,i)perylene | F20GP031 | | NL | NA. | | Benzoic acid | F20GP031
F20GP032 | 2
1 | NL | NA | | Chrysene | E20GP003 | | 10 | No. | | Chrysene | F20GP005 | | | No. | | | F20GP008 | 50
2 | | er Yes
No | | | F20GP024 | | | No No | | | F20GP025
F20GP031 | | | Yes
No | | sausy og som sinderhilling og det.
Anthroppin | idus Destination de Assette de Maria de Companya Co | 2 | NL | Haraman an an Indonésia
NA | | Anthracene | F20GP031 | | WENT STEEL SELECTION | nalida de la compresión d | | Fluorauhene | F20GR031 | | NL NL | · · · · · · · · · · · · · · · · · · · | | Summary of DPT Groundwater Analytical Results | | | | | | | | |---|----------------------|---------------|-----------|--------------|--|--|--| | Parameters | Location | Concentration | RBSLs | Exceeds RBSL | | | | | Semivolatile Organic Compounds (µg | (L) | | | | | | | | Fluorene | F20GP031 | 0.80 | NL | NA | | | | | Indeno(1,2,3-cd)pyrene | F20GP031 | 2 | NL | NA | | | | | Phenanthrene | F20GP031 | | NL NL | NA | | | | | Phenol | F20GP032 | 0.60 | NL | NA | | | | | Pyrene | F20GP031 | 10 | NL | NA
NA | | | | | Bis(2-ethylhexyl)phthalate | F20GP031
F20GP032 | 2 2 | NL | NA | | | | | Diethylphthalare | F20GP031
F20GP032 | 0.70
0.60 | NE | NA. | | | | | Di-n-butylphthalate | F20GP031
F20GP032 | 1
0.50 | NL | NA | | | | NL = Not listed NA = Not applicable $\mu g/L$ = Micrograms per liter RBSLs from the South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC, January 5, 1998) were used as reference concentrations. Bolded concentrations exceed RBSL | Domesia | T | G | D.D.CT | Shallow | Exceed | |----------------------------|--------------------|---------------------------|-----------------------------|------------------------|-----------------------| | Parameters | Location | Concentration | RBSL | Background | RBSL | | Area 19 | - 100 | | | | | | Semivolatile Organic Compo | unds (µg/L) | | | 4 | alkina Distriction of | | Benzoic acid | FDS19A | 9 | . NL | NA | ' NA | | | FDS19B
FDS19C | 19
6 | | | | | |
FDS19D
FDS19E | 6
6 | | | | | | FDS19G | 8 | | | | | bis(2-Ethylhexyl)phthalate | FDS19B | 41 | NL | NA | NA | | Butylbenzylphthalate | FDS19B | 1 | » NL | NA NA | NA NA | | Di-n-butylphthalate | FDS19A | I | NL | NA | NA | | | FDS19B
FDS19C | [
1 | | | | | | FDS19E | 1 | | | | | Inorganics (μg/L) | FDS19F | 1 | | - | | | | | | | | | | Arsenic (As) | FDS19A
FDS19B | 13.2
8.2 | 50 | 17.8 | No
No | | | FDS19C | 4.1 | | | No a | | | FDS19D
FDS19E | 17
3.3 | | | No No | | | FDS19F
FDS19G | 20.6
5.2 | | and (States and Asset) | No
No | | arium (Ba) | FDS19A | 293 | 2,000 | 31 | No | | | FDS19B | 217 | | | No | | | FDS19C
FDS19D | 46.7
42.7 | | | No
No | | | FDS19E | 46.2 | | | No | | | FDS19F
FDS19G | 81.8
32.6 | | | No
No | | hromium (Cr) | FDS19A | 0.73 | 100 | 3.88 | No | | | FDS19B | 1.9 | | | No. | | | FD\$19C
FD\$19D | 2.7
1 | | | No /
No | | State in | FDS19E
FDS19F | 1.5
3.1 | | | No
No | | | FDS19G | 6.7 | | | Nó | | ead (Pb) | FDS19C | 4.9 | 15 | 4.6 | No | | | FDS19F | 3.2 | A PAN | | No | | Area 20 | | | | | | | emivolatile Organic Compo | | | SALES PROPERTY OF THE SALES | | Frank Barrier | | otal PAHs | FDS20A
FDS20C | 3 | 25 | Karajari dibi | No
No * | | 2-Methylnaphthalene | FDS20A | 3 | 10 | NA | No | | | FDS20C | 2
54,350 - + 1,550,250 | | | No | | Naphthalene | FDS20C | | 10 | NA - | No | | -Chloro-3-methylphenol | FDS20A | 1 | NL | NA | NA | | Parameters | Location | Concentration | RBSL | Shallow
Background | Exceed
RBSL | |--------------------------|--|--------------------------------------|-----------|-----------------------|----------------------------| | Semivolatile Organic Com | pounds (μg/L) | | | | | | 4-Methylphenol | FDS20B
FDS20C
FDS20E | 1
1
8 | NL | NA . | Y
Y | | 4-Nitrophenol | FDS20C | 1 | NL | NA | NA | | Acenaphthene. | FDS20A
FDS20C
FDS20E
FDS20F | 2
5
1
2 | ML, 13 | NA | NA. | | Anthracene | FDS20A
FDS20C | 1
1 | NL | NA | NA | | Benzoic acid | FDS20A
FDS20B
FDS20C
FDS20D
FDS20E | 1.5
2
1.5
1.4 | NL | NA
Talenta | NA | | Dibenzofuran | FDS20C | 2 | NL | NA | NA | | Diethylphthalate | FDS20A | 1 | NL | NA NA | NA
NA | | Di-n-butylphthalate | FDS20A
FDS20B
FDS20C
FDS20D | 1
1
0.6
1 | NL | NA | NA | | Fluoranthene | FDS20C | 1 | NL | NĀ | NA . | | Fluorene | FDS20C
FDS20F | 4 1 | NL | NA | NA | | Pentachlorophenol | FDS20C | 1 | NL. | NA * | N _A | | Phenanthrene | FDS20A
FDS20B
FDS20C
FDS20E | 1
1
7
2 | NL | NA | NA | | Phenol | FDS20A | | NL | NA | NA 1 | | Pyrene | FDS20A
FDS20C | 1
1 | NL | NA | NA | | Inorganics (µg/L) | · · · | | | - | | | Arsenic (As) | FDS20A
FDS20B
FDS20C
FDS20D
FDS20E | 5.5
11,3
13.4
23.74
15.8 | 30 | 17.8 de 18. | No
No
No
No
No | | Barium (Ba) | FDS20A
FDS20B
FDS20C
FDS20D
FDS20E | 94.55
142
428
79.3
146 | 2,000 | 31 | No
No
No
No
No | | Summary of Monitoring Well Analytical Results | | | | | | | |---|--|--|------|-----------------------|----------------------------|--| | Parameters | Location | Concentration | RBSL | Shallow
Background | Exceed
RBSL | | | Inorganics (μg/L) | | | | | | | | Cadmium (Cd) | FDS20C
FDS20D
FDS20B | 1,2
0,36
0.89 | 5 | 0.53 | No
No
No | | | Chromium (Cr) | FDS20A
FDS20B
FDS20C
FDS20D
FDS20E
FDS20F | 1.15
2
3.9
2.6
2.4
0.56 | 100 | 3.88 | No
No
No
No
No | | | Lead (Pb) | FDS20B
FDS20C | 2.2
3.1 | 15. | 15.4 | No
"No | | NL Not listed NA = Not insted NA = Not applicable $\mu g/L = Micrograms$ per liter RBSLs from the South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC, January 5, 1998) were used as reference concentrations. Bolded concentrations exceed RBSL. | SWMU 3 | | | | | | |---------------------------|--|--|--|--|--| | Soil Samples and Analyses | | | | | | | SWMU 3 Soil Samples and Analyses | | | | | | | | |----------------------------------|---|-------------------------|-------------------|---------------------------|--|--|--| | Boring
Location | Sample
Identifier | Sample
Interval | Date
Collected | Analyses | Remarks | | | | 003SB001 | 003SB00101
003SB00102 | Upper
Lower | 8/29/96 | Suite-1/coniide,
SVOCs | Pesticides: OP Pesticides collected 11/12/96 | | | | 003SB002 | 003SB00201
003SB00202 | Upper
Lower | 8/28/96 | Suite 1/cyanide, pH | Pesticides, OP Pesticides collected 11/12/96 | | | | 003SB003 | 003SB00301
003SB00302 | Upper
Lower | 8/28/96 | Suite 1/cyanide, pH | Pesticides, OP Pesticides
collected 11/12/96 | | | | 003SB004 | 003SB00401
003SB00402 | Upper
Lower | 9/26/96 | Suite 1 | OP Pesticides collected
1t/12/96 | | | | 003SB005 | 003SB00501
003SB00502 | Upper
Lower | 9/26/96 | Suite 1 | OP Pesticides collected
11/12/96 | | | | 003SB006 | 003SB00601
003SB00602 | Upper
Lower | 9/26/96 | Suite 1 | OP Pesticides collected 11/12/96 | | | | 003SB007 | 003SB00701
003SB00702* | Upper | 10/08/96 | Suite 1
Suite 2 | Lower interval not sampled due to obstruction. <i>QP</i> Pesticides not collected *Duplicate Sample | | | | 003SB008 | 003SB00801
003SB00802 | Upper
Lower | 9/26/96 | Suite 1 | OP Pesticides collected 11/12/96 | | | | 003SB009 | 003SB00901
003SB00902 | Upper
Lower | 9/26/96 | Suite I | OP Pesticides collected | | | | 003SB010 | 003SB01001
003SB01002 | Upper
Lower | 9/26/96 | Suite 1 | OP Pesticides collected 11/12/96 | | | | 003SB011 | 003SB01101
003SB01102 | Upper
Lower | 7/28/99 | SW-846 pesticides | *Duplicate Sample | | | | 003SB012 | 003SB01201
003CB01201*
003SB01202 | Upper
Upper
Lower | 7/28/99 | SW-846 pesticides | *Duplicate Sample | | | | 003SB013 | 003SB01301
003CB01301*
003SB01302 | Upper
Upper
Lower | 7/30/99 | SW-846 pesticides | | | | | 003SB014 | 003SB01402 | Lower | 7/28/99 | Suite 3 | | | | | 003SB015 | 003SB01501
003SB01502 | Upper
Lower | 12/17/99 | pesticides only | ogna is albancing a
Colony | | | | 003SB016 | 003SB01601
003SB01602 | Upper
Lower | 1/27/99 | pesticides only | | | | | 003SB017 | 003SB01701
003SB01702 | Upper
Lower | 1/27/99 | pesticides only | | | | | 003SB018 | 003SB01801
003SB01802 | Upper
Lower | 1/27/99 | pesticides only | r communicación de transferior de 2006 de minimo de 2006 20 | | | | 003SB019 | 003SB01901
003SB01902 | Upper
Lower | 1/27/99 | pesticides only | | | | | SWMU 3 Soil Samples and Analyses | | | | | | | | | |----------------------------------|--------------------------|--------------------|-------------------|-----------------|---------|--|--|--| | Boring
Location | Sample
Identifier | Sample
Interval | Date
Collected | Analyses | Remarks | | | | | 003SB020 | 003SB02001
003SB02002 | Upper
Lower | 1/27/99 | pesticides only | | | | | Suite 1 SW-846 (metals, pesticides/PCBs, OP pesticides) at DQO Level III. Appendix IX suite: SW-846 (metals, pesticides/PCBs, herbicides, OP pesticides, dioxins, SVOCs, VOCs); cyanide; hexchrome at DQO Level IV. SW-846 pesticides, SPLP pesticides/PCBs, Total Organic Carbon (TOC) at DQO Level III. Suite 2 Suite 3 Duplicate Sample | SWM
Groundwater Sam | • | | | |------------------------|--------------|-----------|-------------------| | Sample Identifier | Date Sampled | Analyses | Remarks | | 00300101 | 11/21/96 | Note I | | | 00300201* | 11/21/96 | Note 1/2* | *Duplicate sample | Note 1 11/21/96 collected ## Notes: Well Number 003001 003002 003003 1 Well Depth Shallow Shallow Shallow SW-846 (metals, pesticides/PCBs, OP pesticides) at DQO Level III Appendix IX suite: SW-846 (metals, pesticides/PCBs, herbicides, OP pesticides, dioxins, SVOCs, VOCs); hex-chrome at DQO Level IV 2 00300301 Duplicate sample collected | | Analytes Detected in Surface and Subsurface Soil | | | | | | | | | | | |-------------------------------------|---|---|--------------------
--|---|--|-----------------------|--|--|--|--| | Parameters | Sample
Location | Surface
Concentration | Residential
RBC | Surface
Background | Subsurface
Concentration | Soil to Groundwater
SSL (Site Specific) | Subsurface Background | | | | | | SWMU 3 | | | | | | | | | | | | | Volatile Organic Compounds (μg/kg) | | | | | | | | | | | | | Acrolein | 003B007 | 12 | 160000 | NA . | NT | 867.40 | NA | | | | | | Semivolatile Organic Compounds (µg. | /kg) | | | | | | | | | | | | Butylbenzylphthalate * 1 | 003B007 | 930 | 1600000 | NA TO STATE OF THE PARTY | NT | 6103322.75 | NA I | | | | | | Pesticides and PCBs (µg/kg) | | | | | | | | | | | | | alpha-Chlordane | 003B002
003B003
003B007
003B008
003B009
003B013
003B015 | 4.90
16000
2.40
420
21
6.70
17 | 1800 | NA. | ND
5,5
ND
35
.85
ND
ND | 2035.14 | NA | | | | | | gamma-Chlordane | 003B002
003B003
003B006
003B007
003B008
003B009
003B013
003B015 | 5.90
22000
1.70
2.65
510
21
5.25
23 | 1800 | NA | ND
6.10
ND
ND
40
110
ND | 4067.95 | NA | | | | | | 4.4. DDD | 003B003
003B007
003B012
003B013
003B016
003B017
003B018
003B019
003B020 | 420
9.10
3900
250
17000
770
310000
177
66 | 2760 | NA | ND
ND
6100
7-60
20
74
190
8:10
ND | 5082.41 | NA | | | | | | | Analytes Detected in Surface and Subsurface Soil | | | | | | | | | | | |-----------------------------|--|----------------------------|---------------------------------------|-----------------------|-----------------------------|--|-----------------------|--|--|--|--| | Parameters | Sample
Location | Surface
Concentration | Residential
RBC_ | Surface
Background | Subsurface
Concentration | Soil to Groundwater
SSL (Site Specific) | Subsurface Background | | | | | | Pesticides and PCBs (µg/kg) | | | | | | | | | | | | | 4,4-DDE | 003B001
003B002
003B003
003B004 | 3.50
81
2600
3.80 | 1900 | NA. | NP
ND
ND
ND | 16226.39 | NA NA | | | | | | | 003B0Q5
003B006
003B007
003B008 | 25.
5
14
4 27, | | | ND
ND
ND
ND
ND | | na contrata | | | | | | | 003B009
003B010
003B011
003B012 | 200
21
72
2150 | | | 160
ND ****
ND 1500 | | | | | | | | | 003B013
003B015
003B016
003B017 | 130
770
3600
410 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | ND
ND
8.2
ND | | | | | | | | | 003B018
003B019
003B020 | 44000
130
56 | | | 60
ND
ND | | | | | | | | 4,4'-DDT | 003B002
003B003
003B004
003B005 | 65
570
3.60
19 | 1900 | NA | ND
ND
ND
ND | 9547.19 | NA | | | | | | | 003B006
003B007
003B008
003B009 | 5.70
95.50
82
180 | | | ND
ND
12
250 | | | | | | | | | 003B010
003B011
003B012
003B013 | 20
71
89000
875 | | | ND
20
73000
27 | | | | | | | | | 003B015
003B016
003B017 | 220
200000
7400 | | | ND
240
340 | | | | | | | | Dieldrin 7 | 003B018
003B019
003B020 | 2500000
340
360 | 40 | | 3700
180
39
ND | 165 | NA . | | | | | | Diekim | 003B007 | 3.65
12 | 40 | NA | ND
ND | 1.65 | NA - | | | | | | Endosulfan I | 003B013 | <u>5</u> .7 | 47000 | NA | ND | 7093.81 | NA | | | | | ## Analytes Detected in Surface and Subsurface Soil | Parameters | Sample
Location | Surface
Concentration | Residential
RBC | Surface
Background | Subsurface
Concentration | Soil to Groundwater
SSL (Site Specific) | Subsurface Background | |--|---|------------------------------|-----------------------|-----------------------|----------------------------------|--|-----------------------| | Pesticides and PCBs (µg/kg) | | | | - | | - | | | Endrin (\$) j | 003B002
003B003 | 8,60
540 | 2300 | NA NA | ND
ND | 359.54 | NA | | Heptachlor | 003B003
003B007
003B008 | 520
3
210 | 140 | NA | ND
ND
9.0 | 8200.18 | NA | | Heptachlor epoxide | 003B002
003B009 | 3.1
25.9 | 70 | - NA | ND
Sis | 241.85 | NA - | | Aroclor-1248 | 003B015
003B019
003B003 | 49
2.5
28000 | 320 | NA | ND
ND
ND | 2243.95 | NA | | Dioxins (ng/kg) | | | | | | | | | 1234678-HpCDD | 003B007
003B007 | 3.81
0.472 | 0.43
0.043 | NA
NA | NT
NT | 99.32
1 98.6 3 | NA
NA | | OCDD
TEQ // A | 003B007
003B007 | 126
0.13 | 4.30
0.0043 | NA
NA | NT
NT | 99.32
NA | NA
NA | | Total Hepta-Dioxins Total Hexa-Dioxins | 003B007
003B007 | 11.3
0.738 | NA
NA | NA
NA | NT
NT | NA
NA | NA
NA | | pH (SU) | en en entre en la remije ja ne betraja in elektrone en e | | | er | <u> </u> | | | | pH 4 30 | 003B002
003B003 | 7.86
6.89 | NA | NA | 7.93
7.18 | NA | NA | | Inorganics (mg/kg) | | | | | • | · | | | Aluminum (Al) | 003B001
003B002
003B003 | 4200 ***
6330
8000 *** | 7800 | 18700 | 5150
4990
6810 | 1740950 | 23600 | | | 003B004
003B005
003B006 | 6750
5960
5390 | | | 5620
8080
9840 | | | | | 003B007
003B008
003B009
003B010 | 7015
4920
3750
7220 | | | . NT -
5520
6270 -
6760 | | | | Antimony (Sb) | 003B004
003B009 | 0.34
ND | 3.10 | 2.89 | ND
0.39 | 7.11 | NA | | | Analytes Detected in Surface and Subsurface Soil | | | | | | | | | | | |--------------------|--|--|--------------------|-----------------------|---|--|-----------------------|--|--|--|--| | Parameters | Sample
Location | Surface
Concentration | Residential
RBC | Surface
Background | Subsurface
Concentration | Soil to Groundwater
SSL (Site Specific) | Subsurface Background | | | | | | Inorganics (mg/kg) | 1400 | | | | | | | | | | | | Arsenic (As) | 003B001
003B002
003B003
003B004
003B005
003B006
003B007
003B008
003B009
003B010 | 1,60
3,40
3,60
2,60
1,50
1,20
1,50
1,60
2
3,30 | 0.43 | 17.20 | 2,60
1,50
4,30
2,20
4,40
3
NT
1,80
2,90
2,20 | 536.02 | 15:50 | | | | | | Barium (Ba) | 003B001
003B002
003B003
003B004
003B005
003B006
003B007
003B008
003B009
003B010 | 34.80
44.60
52
40.10
65
45.10
13.10
37.50
27.90
38.30 | 550 | 109 | 20.30
24.70
14.50
39.70
26.80
33.30
NT
22.30
40.20
36.80 | 631.79 | 64.50 | | | | | | Beryllium (Be) | 003B002
003B003
003B004
003B005
003B006
003B008
003B009
003B010 | 0.55
0.67
0.56
0.58
0.51
0.49
0.35
0.52 | 16 | 1.20 | 0.28
0.29
0.53
0.37
0.50
0.37
0.64
0.43 | 14.01 | | | | | | | Cadmium (Cd) | 003B001
003B002
003B003
003B008
003B009
003B010 | ND
0.22
0.38
0.25
ND
0.06 | 7.80 | 1.07 | 0.15
ND
0.12
ND
0.22
0.14 | 22.56 | 0.48 | | | | | ## Analytes Detected in Surface and Subsurface Soil | Parameters | Sample
Location | Surface
Concentration | Residential
RBC | Surface
Background | Subsurface
Concentration | Soil to Groundwater
SSL (Site Specific) | Subsurface Background |
--|--|---|--------------------|-----------------------|--|--|-----------------------| | Inorganics (mg/kg) | | | | | | | | | Calcium (Ca) Lisa (Ca) Calcium | 003B001
003B002
003B003
003B004
003B005
003B007
003B008
003B009
003B010 | 3770
12400
34000
6840
1360
1380
-567
22600
2830
3280 | NA | | 1290
815 **
5180
8040
1270 **
1420 **
NT
7010
23200
929 | NA | | | Chromium (Cr) | 003B001
003B002
003B003
003B004
003B005
003B006
003B007
003B008
003B009
003B010 | 4.40
12
12.90
9.70
4.90
4.70
6.60
5.60
4.70
12 | 23 | 42.80 | 16.40
6.30
28
6.60
23.50
17.30
NT
9
14.20 | 5561.99 | 43.40 | | Cobali (Co) is the second of t | 003B001
003B002
003B003
003B003
003B005
003B005
003B008
003B008
003B009
003B010 | 2.
2.60 ·
2.10 ·
2.40 ·
2.50 ·
2.2 ·
2.40 ·
1.70 ·
2.40 · | 470 | 6.60 | 0.89 - 1.60 - 2.30 - 2.50 - 2.20 | 655.98 | 814 | | Copper (Cu) Cyanide (CN) | 003B001
003B002
003B003
003B009
003B010 | 2.30
11.90
28.70
ND
10.70 | 310
160 | 260 | 0.51
0.83
ND
41.50
ND | 27410.37 | 32.60
0.22 | | | | Analyt | es Detected in Si | irface and Subsurf | ace Soil | | | |---|---|--|--------------------|-----------------------|--|---|-----------------------| | Parameters | Sample
Location | Surface
Concentration | Residential
RBC | Surface
Background | Subsurface
Concentration | Soil to Groundwater
SSL (Site Specific) | Subsurface Background | | Inorganics (mg/kg) | | | | | | | | | Iron (Fe) * * * * * * * * * * * * * * * * * * * | 003B001;
003B002
003B003
003B004
003B005
003B006
003B007
003B008
003B009
003B010 | 4670
6860
4210
6170
3510
3210
2950
3320
4100
6660 | 2300 | 29200 | 12700
5750 %
20000 %
4700
16200
12200
NT
8520
5330
6910 | 708024/31 | 35800 | | Lead (Pb) | 003B001
003B002
003B003
003B004
003B005
003B006
003B007
003B008
003B009
003B010 | 3
114
50.60
16
5.40
4.90
5.40
8.20
12.10
41.70 | 400 | 181 | 4.1
4.1
5.5
8.2
6.4
7.0
NT
3.7
36.9
6.3 | 522.29 | 66.30 | | Magnesium (Mg) | 003B001
003B002
003B003
003B004
003B005
003B006
003B007
003B008
003B009
003B009 | 278
630
1290
519
338
338
209
1060
280
602 | NA E | NA
PT | 367
- 289,4
- 575
- 447
- 461
- 670
- NT
- 498
- 1260
- 420 | NA CONTRACTOR OF THE PROPERTY | NA Company | | Manganese (Mn) | 003B001
003B002
003B003
003B004
003B005
003B006
003B007
003B008
003B009
003B010 | 61.80
193
183
194
341
207
17.65
210
118
160 | 1100 | 325 | 27.3
39.1
26.0
196.0
29.8
62.1
NT
50.9
164.0
114.0 | 161337.64 | 291 | | Analytes Detected in Surface and Subsurface Soil | | | | | | | | | | | |--|--|---|--------------------|-----------------------|--|--|--|--|--|--| | Parameters | Sample
Location | Surface
Concentration | Residential
RBC | Surface
Background | Subsurface
Concentration | Soil to Groundwater
SSL (Site Specific) | Subsurface Background | | | | | Inorganics (mg/kg) | | | | | | | | | | | | Mercury (Hg) | 003B001
003B002
003B003
003B009
003B010 | 0.27
0.06
0.11
ND
0.04 | 2.30 | 1.03 | ND
ND
ND
0.04
ND | 24,10 | 0.31 | | | | | Nickel (Ni) | 003B001
003B002
003B003
003B007 | 2.20
7
6.30
3.20 | 160 | 20.60 | 1.3
2.3
1.3
ND | 2366.00 | 18.30 | | | | | Potassium (K) | 003B001
003B002
003B003
003B005
003B006
003B009
003B010 | ND
224
302
ND
ND
ND
ND
278 | NA | NA | 245
169
259
347
406
258
ND | NA | NA N | | | | | Selenium (Se) | 003B006
003B007
003B009
003B010 | 0.36
0.55
ND
0.43 | 39 | 1.22 | ND
ND
0.43
ND | 219.39 | 1.26 | | | | | Sodium (Na) | 003B001
003B002
003B003 | 167
226
185 | NA. | NA Z | 154
1711
119 | NA | | | | | | Vanadium (V) | 003B001
003B002
003B003
003B004
003B005
003B006
003B007
003B008
003B009
003B010 | 7.70
13.10
15.60
11.90
6
5.40
8.70
6.70
7.30
15.80 | 55 | 60.90 | 21.0
9.4
32.0
7.7
29.2
20.3
NT
14.3
17.2 | 5928.27 | 72.50 | | | | | Zinc (Zn) | 003B001
003B002 =
003B003
003B007
003B009
003B010 | 10.30
47.10
64.30
33.60
ND
52.90 | 2300 | 519 | 59.8
14.4
9.2
ND
126 | 103103.73 | 145 | | | | ## Analytes Detected in Surface and Subsurface Soil | Parameters | Sample
Location | Surface
Concentration | Residential
RBC | Surface
Background | Subsurface
Concentration | Soil to
Groundwater
SSL (Site Specific) | Subsurface Background | |--------------------------------------|---|---|--------------------|-----------------------|--|--|-----------------------| | SWMU 24 | | | | | | | | | Volatile Organic Compounds (μg/kg) | | | | | | | | | 1,4-Dichlorobenzene | 024B004 | ND | 27000 | NA . | 4.4 | 762.99 | NA NA | | Semivolatile Organic Compounds (µg/k | g) | | | | | | | | BEQs | 024B001
024B002
024B003
024B004
024B005
024B006
024B007
024B009
024B010 | 176.97
128.41
189.10
141.48
0
887.68
292.23
94.40
142 | 87 | 453 | 0
0
172,39
0
0
0
137,21 | NA . | 184 | | Benzo(a)anthracene | 024B001
024B002
024B003
024B004
024B006
024B007
024B009
024B010 | 20
31
69
71
960
100
50
36 | 870 | NA | 3800
ND
ND
75
ND
ND
90
ND | 693.62 | NA | | Benzo(a)pyrene | 024B002
024B003
024B004
024B006
024B007
024B009
024B010 | 87
110
680
190
63
41 | 87 | NA. | ND
ND
140
ND
ND
87
ND | 2962.31 | , NA | | Benzo(b)fluoranthene | 024B002
024B003
024B004
024B006
024B007
024B009
024B010 | 39
85
100
470
260
51
35 | 870 | NA | ND
ND
95
ND
ND
82
ND | 2143.29 | NA | | Analytes Detected in Surface and Subsurface Soil | | | | | | | | | | | |--|---|--|--------------------|-----------------------|--|--|--|--|--|--| | Parameters | Sample
Location | Surface
Concentration | Residential
RBC | Surface
Background | Subsurface
Concentration | Soil to Groundwater
SSL (Site Specific) | Subsurface Background | | | | | Semivolatile Organic Compounds (µg/ | kg) | | | | | | | | | | | Benzo(k)fluoranthene | 024B002
024B003
024B004
024B006
024B007
024B009
024B010 | 28
77
94
750
270
58
30 | 8700 | NA . | ND
ND
75
ND
ND
88
ND | 21432.93 | NA STATE OF THE PROPERTY TH | | | | | Chrysene | 024B002
024B003
024B004
024B006
024B007
024B009
024B010 | 40
70
110
970
200
60
40 | 87000 | NA | ND
ND
86
ND
ND
83
ND | 69361.60 | NA | | | | | Dibenz(a,h)anthracene | 024B004
024B006
024B009 | 29
190
30 | . 87 | NA NA | 30
ND
48 | 662.13 | NA A | | | | | Indeno(1,2,3-cd)pyrene | 024B002
024B003
024B004
024B006
024B007
024B009
024B010 | 21
55
76
330
110
38
29 | 870 | NA | ND
ND
68
ND
ND
48
ND | 6046.27 | NA | | | | | 2-Methylnaphthalene | 024B004
024B005
024B006
024B007 | ND 340
340
110
ND | 160000 | NA | 57
8900
38500
11000 | 13209.67 | NA THE | | | | | Acenaphthene | 024B006 | 290 | 470000 | NA | ND | 228747.04 | NA | | | | | Acenaphthylene | 024B004 | 21 | 160000 | NA | 38 | 33715.44 | NA NA | | | | | Anthracene | 024B005
024B006 | ND
399.50 | 2300000 | NA | 120
265 | 4724640.14 | NA | | | | | Benzo(g.h.li)perylene | 024B002
024B003
024B004
024B006
024B007 | 22.*
64
2. 87. 2
. 310
. i20 · | .160000
.:5 | NA a | ND
ND
150 -
ND
k ND | 41339296.88 | NA | | | | | | 024B009
024B010 | | | | 78
ND | | | | | | | | Analytes Detected in Surface and Subsurface Soil | | | | | | | | | | | |--|---|--|------------------------|-----------------------|---|--|------------------------|--|--|--|--| | Parameters | Sample
Location | Surface
Concentration | Residential
RBC | Surface
Background | Subsurface
Concentration | Soil to Groundwater
SSL (Site Specific) | Subsurface Background | | | | | | Semivolatile Organic Compounds (µg/ | /kg) | | | | | | | | | | | | Benzoic acid | 024B001
024B002
024B003
024B004
024B009
024B010 | 29 29 50 50 50 50 50 50 50 50 50 50 50 50 50 | ;31000000
;31000000 | NA | ND
42
67
74
80
51 | 177050,51 | NA 2 | | | | | | bis(2-Ethylhexyl)phthalate (BEHP) Dibenzoftran | 024B006
024B004
024B005
024B006 | 200
ND
ND
325 | 46000
31000 | NA
NA | ND
27
460
1250 | 1315519.04
4906.84 | NA
NA | | | | | | Dimethyl phthalate | 024B007
024B009 | ND
440 | 78000000 | NA | 380
ND | 621525.82 | NA | | | | | | Di-n-butylphthalate | 024B001
024B004
024B009
024B010 | 20 | 780000 | NA | ND
36
50
ND | 1825578.49 | NA | | | | | | Fluoranthene | 024B001
024B002
024B003
024B004
024B006
024B009
024B010 | 36
52
110
160
2500
88
57 | 310000 | NA | 22
ND
ND
78
ND
150
ND | 2332217.77 | NA | | | | | | Fluorene | 024B006 | 660 ± | 310000 | NA | 2200 | 302323.09 | NA | | | | | | Isophorone | 024B007
024B005
024B006
024B007 | ND
ND
ND
ND | 670000 | NA | 370
1900
700 | 166.61 | NA NA NA MANA NA NA NA | | | | | | N-Nitrosodiphenylamine | 024B005
024B006 | ND | 130000 | NA | 890
3900 | 338.34 | NA | | | | | | Naphthalene | 024B006
024B007 | 130
ND | 160000 | NA | 9200
4200 | 22060.67 | NA | | | | | | Nitrobenzene | 024B006 | ND | 3900 | NA | 420 | 37.98 | NA NA | | | | | | | Analytes Detected in Surface and Subsurface Soil | | | | | | | | | | | |-----------------------------------|---|--|---|-----------------------|---|--
---|--|--|--|--| | Parameters | Sample
Location | Surface
Concentration | Residential
RBC | Surface
Background | Subsurface
Concentration | Soil to Groundwater
SSL (Site Specific) | Subsurface Background | | | | | | Semivolatile Organic Compounds (# | g/kg) | | | | | | | | | | | | Phenanthrene | 024B002
024B003
024B004
024B005
024B006
024B007
024B009
024B010 | 26
\$6
130
ND
2050
ND
38
21 | 230000
********************************* | NA. | ND 1
ND 2000
5050
33
ND | 480449.19 | NA
Landau Salana
Landau Salana
Landau
Landau Salana
Landau
Landau Salana
Landau
Landau
Landau
Landau | | | | | | Pyrene | 024B001
024B002
024B003
024B004
024B005
024B006
024B007
024B009
024B010 | 27
46
85
130
ND
1800
120
74
43 | 230000 | NA | ND
ND
ND
79
90
230
110
130
ND | 1678349.00 | NA | | | | | | Inorganics (mg/kg) | | | | | | | | | | | | | Aluminum (A1) | 024B005
024B006
024B007 | 7030
8665
5650 | 7800 | 18700 | 7600
5675
4650 | 1740950 | 23600 | | | | | | Antimony (Sb) | 024B005
024B006
024B007 | 0.46
0.48
0.37 | 3.10 | 2.89 | 0.53
0.25
ND | 7.11 | NA | | | | | | Arsenic (AS) | 024B005
024B006
024B007 | 2,50
5,50
8,10 | 0.43 | 17.20 | 8.10
1-55
2.80 | 536.02 | 15,50 | | | | | | Barium (Ba) | 024B005
024B006
024B007 | 31.20
15.90
19.90 | 550 | 109 | 16.60
20.55
8.50 | 631.79 | 64.50 | | | | | | Calcium (Ca) | 024B005
024B006 =
024B007 | 1960
2760
16600 | NA . | NA
♥↓↓↓₩ | 481
184
253 | NA | NA | | | | | | Chromium (Cr) | 024B005
024B006
024B007 | 9.60
27.80
15.40 | 23 | 42.80 | 22.60
7.75
10.80 | 5561.99 | 43.40 | | | | | | | Analytes Detected in Surface and Subsurface Soil | | | | | | | | | | |--------------------|--|--------------------------|--------------------|-----------------------|-----------------------------|--|-----------------------|--|--|--| | Parameters | Sample
Location | Surface
Concentration | Residential
RBC | Surface
Background | Subsurface
Concentration | Soil to Groundwater
SSL (Site Specific) | Subsurface Background | | | | | Inorganics (mg/kg) | | | | | | | | | | | | Cobalt (Co) | 024B005
024B006
024B007 | 2.20
1.55
1.60 | 470 | 6.60 | 41.40
101
0.76 | 655,98 | 8.14 | | | | | Copper (Cu) | 024B005
024B006
024B007 | 3
1.15
10.40 | 310 | 260 | 0.86
0.75
0.39 | 27410.37 | 32.60 | | | | | Iron (Fe) | 024B005
024B006
024B007 | 4920
20750
5880 | 2300 | 29200 | 19100
6435 -
9870 | .708024.31 | 35800 | | | | | Lead (Pb) | 024B005
024B006
024B007 | 110
49.80
62.10 | 400 | 181 | 19100
6435
9870 | 522.29 | 66.30 | | | | | Magnesium (Mg) | 024B005
024B006
024B007 | 418
503
898 | NA . | NA
 | 634
389
262 | NA | NA . | | | | | Manganese (Mn) | 024B005
024B006
024B007 | 23.20
36.55
74.80 | 1100 | 325 | 54.5
25.65
16.9 | 161337.64 | 291 | | | | | Mercury (Hg) | 024B005
024B006
024B007 | ND 0.04
0.04
0.06 | 2.30 | 1.03 | 0.04 F
ND
0.06 | 24.10 | 0.31 | | | | | Nickel (Ni) | 024B005
024B006
024B007 | 3.40
2.75
5.40 | 160 | 20.60 | 2.2
1.7
1.4 | 2366.00 | 18.30 | | | | | Potassium (K) | 024B005
024B006
024B007 | 206
272
302 | NA. | _NA | 365
214:50
102 | NA . | NA . | | | | | Selenium (Se) | 024B005
024B006
024B007 | 0.45
1.60
0.72 | 39 | 1.22 | 2.20
0.69
1.10 | 219.39 | 1.26 | | | | | Sodium (Na) | 024B005
024B006
024B007 | 90.10 //
109
169 | NA
 | NA
NA | 99.40
72.85 | NA S | NA
- | | | | | Vanadium (V) | 024B005
024B006
024B007 | 13.80
37.10
16.60 | 55 | 60.90 | 43.9
12.05
18.2 | 5928.27 | 72.50 | | | | | Analytes Detected in Surface and Subsurface Soil | | | | | | | | |--|-------------------------------|-------------------------------|--------------------|-----------------------|-----------------------------|--|-----------------------| | Parameters | Sample
Location | Surface
Concentration | Residential
RBC | Surface
Background | Subsurface
Concentration | Soil to Groundwater
SSL (Site Specific) | Subsurface Background | | Inorganics (mg/kg) | | | | | | | | | Zinc (Zn) | 024B005
024B006
024B007 | 38.50 17.60
17.60
47.20 | 2300 ≥ | 519 | 5- 8.7
5.955
4/7 | 103103-73 | 145 | Notes: Table 10.3.11 SWMU 003 Analytes Detected in Shallow Groundwater | Name | Location | 1 st Quarter
Conc. | 2 nd Quarter
Conc. | 3 rd Quarter
Conc. | Tap Water RBC*
(μg/L) | MCL/SMCL*
(μg/L) | Shallow
Background | |--------------------|--------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------|---------------------|--| | Inorganics (mg/kg) | | | | | | | | | Aliminim (Al) | ,003001
003002
003003 | 9930
2465
15200 | 202
109
741 | 590
27 # 9
966 | 3700 | 50 | 224
224
244
244
244
244
244
244
244
244 | | Arsenic (As) | 003001
003002
003003 | 9.6
3.1
9.7 | ND
ND
ND | ND
ND
ND | | | | | Barium (Ba) | 003001
003002
003003 | 76.9
34.4
77.1 | 29.1
17
20.2 | 24.3
15.9
19.8 | 260 | 2000 | 94,3 | | Beryllium (Be) | 003002
003003 | ND
1.1 | 0.35
ND | ND
ND | | | | | Calcium (Ca) | 003001
003002
003003 | 65100
5500
41100 | 47800
3275
27800 | 46500
21900
32400 | NL | NL | NL NL | | Chromium (Cr) | 003001
003002
003003 | 20.4
5.4
6.6 | ND
ND
1.1 | 1.2
ND
ND | 18 | 100 | 2.05 | | "Cobair (Co) | 003001
003002
003003 | 5.9
5.4
6.6 | ND
2.7
1.1 | ND
ND
ND | | | | | Iron (Fe) | 003001
003002
003003 | 15100
3460
22800 | 371
63.6
606 | 448
47.8
973 | 1100 | 300 | NL | | Magnesium (Mg) | 003001
+ 003002
- 003003 | 9370
11700
7640 | 8680
939
3770 | 3370
1855
6710 | NL | NL | NL | | Manganese (Mn) | 003001
003002
003003 | 199
189
544 | 80.9
102.6
46.6 | 8.7
33.8
24.8 | 84 | 50 | 2010 | | Mercury (Hg) | 003001 | ND . | ND | 0.28 | 102 Sept. 1 | | | Table 10.3.11 SWMU 003 Analytes Detected in Shallow Groundwater | Name | Location | 1 ^s Quarter
Conc. | 2 nd Quarter
Conc | 3 rd Quarter
Conc | Tap Water RBC*
(μg/L) | MCL/SMCL*
(μg/L) | Shallow
Background | |--------------------|----------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|---------------------|-----------------------| | Inorganics (mg/kg) | | | 78. | | | | | | Nicket (Ni) | 003001
003002
003003 | 10
4,9
-10:7 | ND
1.0
ND | ND
64.5
2.2 | | | | | Potassium (K) | 003001
003002
003003 | ND
672
3300 | 757
ND
1670 | 1590
ND
1950 | NL | NL | NL | | Selenium (Se) | 003003 | - 6 | ND | ND | | | | | Sodium (Na) | 003001
003002
003003 | 18400
9605
38200 | 19200
8590
17400 | 9100
18300
36300 | NL | NL | NL | | Thallium
(TI) | 003001
003002
003003 | 3.5
2.9
2.8 | ND
ND
ND | ND
ND
ND | 0,29 | 2 | 5.58 | | Vanadium (V) | 003001
003002
003003 | 31.4
ND
46.7 | 1.3
7.1
2 | 1.2
ND
2.2 | 26 | NL | 1.58 | | Zinc (Zn) | 003002
003003 | ND (a) | .6.6
59.8 | ND
22.2 | | | | Notes: DRAFT FINAL HOBSON FUEL FARM SITE ASSESSMENT REPORT CNC CHARLESTON NORTH CHARLESTON, SOUTH CAROLINA Volume I of I CTO-0144 Contract Number: N62467-89-D-0318 Prepared for: Department of the Navy Southern Division Naval Facilities Engineering Command North Charleston, South Carolina Prepared by: EnSafe Inc. 5724 Summer Trees Drive Memphis, Tennessee 38134 (901) 372-7962 November 28, 2000 Revision: 0 Release of this document requires prior notification of the Commanding Officer of the Southern Division, Naval Facilities Engineering Command, North Charleston, South Carolina. ## **Table of Contents** | 1.0 | INTR | ODUCTION | |--------|------|---| | | 1.1 | Site History 3 | | | 1.2 | Site Geology and Hydrogeology | | 2.0 | DDEX | HOLIC INSPECTIC ATIONS | | 2.0 | | TOUS INVESTIGATIONS | | | 2.1 | ESE Assessment | | | 2.2 | KEMRON Assessment/Remedial Activities | | | 2.3 | S&ME TPH Survey | | | 2.4 | NFESC SCAPS Study | | | 2.5 | Facility 148 IM | | | 2.6 | AOC 626 IM | | | 2.7 | Zone L Subzone G Investigation | | | 2.8 | FDS Investigation | | | | 2.8.1 Area 8 | | | | 2.8.2 Area 11 | | | | 2.8.3 Areas 12, 13, and 14 | | | | 2.8.4 Area 15 | | | | 2.8.5 Other Areas | | | | 2.8.5.1 Area 19 | | | | 2.8.5.2 Area 20 | | | | 2.0.3.2 Area 20 | | 3.0 | HOBS | SON FUEL FARM INVESTIGATION | | | 3.1 | Data Gaps | | | 3.2 | HFF Soil Sample Results | | | | 3.2.1 HFF Soil Analytical Summary | | | 3.3 | HFF Groundwater Sample Results | | | 5.5 | 3.3.1 HFF Groundwater Analytical Summary | | | | · | | 4.0 | CONC | CLUSIONS 18 | | | | | | 5.0 | REFE | RENCES | | | | F | | | | Figures | | Figure | 1_1 | Location of Hobson Fuel Farm | | Figure | | Locations of Previous Investigations, Hobson Fuel Farm Site | | Figure | | Soil Analytical Suites, Hobson Fuel Farm | | Figure | | Groundwater Analytical Suites, Hobson Fuel Farm | | Figure | | | | _ | | TPH in Surface Soil, Hobson Fuel Farm Site | | Figure | | TPH in Subsurface Soil, Hobson Fuel Farm Site | | Figure | | DPT Sampling Points, Hobson Fuel Farm | | Figure | | Data Summary Map - Surface Soil, Hobson Fuel Farm | | Figure | | Data Summary Map - Subsurface Soil, Hobson Fuel Farm Area | | Figure | 3-4 | Data Summary Map - Groundwater, Hobson Fuel Farm Area 30 | # Tables | Table 2.1 | Phase I Detected Soil TPH Concentrations | |-----------|--| | Table 2.2 | FDS Soil Samples - Phase II | | Table 2.3 | Analytes Detected in Soil | | Table 2.4 | FDS Groundwater Samples | | Table 2.5 | Analytes Detected in Groundwater | | Table 2.6 | Areas 19 and 20 DPT Soil and Groundwater Samples and Analyses 57 | | Table 2.7 | Areas 19 and 20 Summary of DPT Soil Analytical Results 61 | | Table 2.8 | Areas 19 and 20 Summary of DPT Groundwater Analytical Results 68 | | Table 2.9 | Areas 19 and 20 Summary of Monitoring Well Analytical Results 74 | | Table 3.1 | DPT Soil and Groundwater Samples and Analyses | | Table 3.2 | Summary of DPT Soil Analytical Results HFF | | Table 3.3 | Summary of DPT Groundwater Analytical Results HFF 81 | 7 8 9 10 12 14 16 19 20 23 #### 1.0 INTRODUCTION As part of the U.S. Navy Comprehensive Long-term Environmental Action Navy (CLEAN) Program, the following *Hobson Fuel Farm Site Assessment Report* has been prepared for the Hobson Fuel Farm (HFF) at Charleston Naval Complex (CNC). This report addresses the HFF area of the CNC Fuel Distribution System (FDS). The HFF was originally identified in the Final RCRA Facility Assessment report (EnSafe/Allen & Hoshall, June 6, 1995) as being located within AOC 626. AOC 626 includes the former Naval Supply Center Fuel Farm, while the HFF investigation focuses on the area surrounding tanks 3900E, 3900F, 3916, and 3917. This assessment included a review and summation of previous investigative findings and additional soil and groundwater samples to characterize the HFF prior to transfer and redevelopment. The HFF and its surrounding area have been investigated for petroleum releases multiple time since 1986, to include: - An initial site characterization in 1986 of the area surrounding former tanks 3900G and 3900H by ESE, Inc. (ESE). - A contamination assessment in 1990 and remedial action in 1992 of the area surrounding former tanks 3900G and 3900H by KEMRON, Inc. (KEMRON). - A soil total petroleum hydrocarbon (TPH) study in 1992 along a fuel supply line that parallels the south side of Hobson Avenue north of the HFF area by S&ME, Inc. (S&ME). - A Site Characterization and Analysis Penetrometer System (SCAPS) within the AOC 626 in July of 1995 by the Naval Facilities Engineering Service Center (NFESC). - An Interim Measure (IM) and closure of Facility 148 in August of 1996 by the Supervisor of Shipbuilding, Conversion and Repair, USN, Portsmouth, VA, Environmental Detachment Charleston SC (SPORTENVDETCHASN). - An IM of a former 18-inch diameter fuel supply pipeline beneath Viaduct Road in 24 December, 1996 by SPORTENVDETCHASN. Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 6 9 13 14 15 16 17 18 25 An investigation of the CNC FDS (Areas 1 - 20) in 1996 - 1997, and 1999 - 2000 by EnSafe to identify system-wide problems associated with petroleum releases from previous operations of the FDS. Areas 1 through 20 were addressed in the FDS Contamination Assessment Report (CAR) (EnSafe, Inc. [EnSafe] September 10, 1998). The FDS CAR discusses the objectives, scope, methodology, history and physical setting for the FDS, which are directly applicable to this HFF site assessment. Figure 1-1 on page 21 presents the location of the HFF relative to the CNC. Figure 1-2 on page 22 shows the locations of the previous investigations. A summary discussion of the previous investigations is in provided in Section 2.0. The primary purpose of this assessment was to perform a focused review of previous investigative findings to determine whether or not the HFF had been characterized adequately to satisfy site closeout requirements under either the South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Program and/or the RFI. In several areas where the characterization was not complete a limited field investigation was performed from September-November of 2000. Since the majority of the site was investigated following UST guidelines, particular interest was placed on determining whether or not RCRA constituents may have been overlooked in areas which may have handled materials other than virgin petroleum products. The secondary purpose of the assessment was to provide the information necessary for the CNC Project Team to provide feedback to the CNC Redevelopment Authority (RDA) regarding potential environmental concerns related to the siting of an approximately 250,000 ft² warehouse that has been proposed for construction in the HFF area. The HFF area is large enough that some flexibility apparently exists in determining a location suitable in size to accommodate the footprint of the proposed warehouse foundation but determining that location could be highly dependent on the outcome of the HFF assessment results. 6 8 9 10 11 12 16 22 23 2.5 26 Areas 1 through 20 were addressed in the FDS CAR (EnSafe September 10, 1998). During September-November of 2000, field investigations were conducted at the HFF to identify impacts to soil and groundwater, and to define the extent of free product contamination, if any, within the site area. The limited scope of the HFF investigation was to comprehensively review all previous investigations, address outstanding issues, and fill data gaps to facilitate transfer of the property. The FDS CAR (EnSafe, September 10, 1998) discusses the objectives, scope, methodology, history and physical setting for the FDS, which are applicable to this HFF site assessment. This report summarizes and compares previous investigation results, describes the specific field investigation conducted, presents and discusses the analytical data collected, and makes appropriate recommendations for the HFF. ## 1.1 Site History A historical review of figures and maps was conducted to gain a detailed perspective of the HFF area over time. Prior to the mid-1930s, the portion of the CNC where the HFF is located consisted of marshland along the Cooper River. This marshland was filled over time, and the base was expanded to the southeast over the filled area. The HFF was built over a portion of this filled area between 1936 and 1944. The HFF area originally included four 55,000 barrel (bbl) concrete tanks with brick facing. In 1974, two of these tanks (the former 3900G and 3900H) were switched from storing Navy Special Fuel Oil to the less viscous Navy Distillate. The tanks began to leak, and were taken out of service in 1975. These tanks were demolished in late 1991, and the current steel tanks (3916 and 3917) were constructed in early 1992. The site area was used as a fuel farm until the CNC was closed in the early 1990s. ### 1.2 Site Geology and Hydrogeology The FDS CAR (EnSafe, September 10, 1998) discuss the geology and hydrogeology of the FDS, including the HFF area. The shallow groundwater flow is discussed later, relative to the analytical results. 2 5 6 10 11 12 13 17 18 19 20 23 #### 2.0 PREVIOUS INVESTIGATIONS #### 2.1 ESE Assessment Environmental assessment of the HFF area began in 1986 with the initial site characterization performed by ESE, Inc. ESE sampled soil and shallow groundwater at the site and nearby surface water and sediment. ESE found contamination to a depth of eight feet below ground surface (bgs) over a
48,000 square-foot area where the former tanks 3900G and 3900H stood. Soil and groundwater samples were analyzed for TPH, volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). TPH concentrations in soil ranged from 146 to 7,280 milligrams per kilogram (mg/kg); while groundwater TPH detections ranged from 341 to 130,000 micrograms per liter (μ g/L). No VOCs were detected in soil or groundwater. Subsequent groundwater sampling by ESE identified PAHs, including some Risk-based Screening Level (RBSL) constituents (KEMRON, 1990). #### 2.2 KEMRON Assessment/Remedial Activities In 1990, KEMRON conducted further study of the HFF area to more closely determine the horizontal and vertical distribution of contamination in the vicinity of the former 3900G and 3900H. Soil analyses included TPH and VOCs, while groundwater samples were analyzed for TPH, VOCs and PAHs. The KEMRON study detected TPH and PAHs, and determined that the horizontal extent of contamination around 3900G and 3900H was smaller than the area originally identified by ESE. The vertical extent was also further refined. KEMRON identified impacted soil from two to ten feet bgs. Resampling of site monitoring wells by KEMRON revealed much lower TPH and PAH concentrations than was originally reported by ESE, indicating a lesser impact to groundwater than was previously observed. No VOCs were detected in this follow-on sampling. From late 1991 to early 1992, after the demolition of tanks 3900G and 3900H and prior to the construction of newer tanks 3916 and 3917, a partially successful attempt at land farming was conducted by KEMRON. This effort was hampered by severe seasonal rainfall and was suspended when construction began on the new tanks (KEMRON, February 1992). Although limited soil 5 6 . 7 11 13 15 16 17 18 23 24 25 removals were reportedly performed in the areas of these tanks, this was not documented in either of the KEMRON documents reviewed (KEMRON, 1990; KEMRON, 1992). After the ESE and KEMRON investigations were conducted, several investigations were performed on areas adjacent to the HFF area, or in areas subject to IM action. These subsequent investigations focused on areas of specific petroleum related contamination associated with the FDS, or to confirm the removal of contaminated media associated with IMs. ## 2.3 S&ME TPH Survey In May of 1992, S&ME, Inc. was retained by the Navy to conduct a soil TPH survey along a fuel supply line that parallels the south side of Hobson Avenue north of the HFF area. The purpose of the investigation was to determine if petroleum related contamination exists along the pipeline right-of-way. Soil samples for TPH analysis were collected at the soil-water interface, at approximately six-feet ft bgs. Two of four samples collected along the northeast and northwest sides of Building 98 revealed subsurface soil TPH concentrations of 690 and 1,000 mg/kg, respectively (TPH was not detected in the other two samples). S&ME's investigation report concluded that soil and groundwater were likely contaminated along this pipeline, and that appropriate abatement procedures should be followed during excavation and dewatering activities which were to accompany forthcoming repairs (S&ME, May 28, 1992). ### 2.4 NFESC SCAPS Study In July of 1995, NFESC performed a site characterization within the AOC 626 (the Naval Supply Center Fuel Farm, including the HFF and surrounding area investigated under the FDS) area using a SCAPS. The objective of the NFESC's investigation was to define the extent of PAH contamination in the area outside the Fuel Farm proper. Confirmatory soil samples were also collected from depths coinciding with the suspected contamination areas. The SCAPS investigation, in conjunction with the confirmatory soil sampling, failed to reveal extensive petroleum contamination in soil (NFESC, April 1996). 3 5 6 7 8 9 10 11 ## 2.5 Facility 148 IM In August of 1996, SPORTENVDETCHASN performed an IM assessment and closure at Facility 148. The tank had been emptied and cleaned prior to the IM, and contained no residual fuel. Free product and petroleum contaminated soil were found throughout the excavation and demolition of Facility 148. Confirmatory samples were analyzed for benzene, toluene, ethylbenzene and xylene (BTEX) constituents, and PAHs. The area most impacted was associated with the piping to Building 98. The excavation was open until July 1997 when the tank pit was backfilled with clean soil (SPORTENVDETCHASN, 1997). The FDS CAR (EnSafe, September 10, 1998), identified this area as FDS Area 19, requiring additional assessment due to the petroleum contamination observed during the Facility 148 IM activities. ### 2.6 AOC 626 IM In December of 1996, the SPORTENVDETCHASN performed an IM at the southwest intersection of Hobson Avenue and Viaduct Road. The objective of this IM was to remove a portion of the 18-inch diameter abandoned fuel pipeline buried beneath the site (AOC 626), remove petroleum saturated soil found during the excavation, and install a free product recovery system, if required. Initial excavations during this removal action revealed heavily stained soil to five feet bgs, with free product leaching from the sides of the open excavation. A total of 229 linear feet of the 18-inch diameter fuel pipeline were removed from where the pipeline traversed beneath Viaduct Road. Approximately 450 cubic yards of petroleum contaminated soil were also removed during the IM. Confirmatory samples were collected from the bottom of the excavation pit and 20 analyzed for TPH, BTEX, PAHs, and metals. A 200-foot, horizontal, perforated, polyvinyl chloride (PVC) free product recovery system was installed, along with PVC vertical standpipesfor product recovery. Approximately 40,000 gallons of water mixed with oil was recovered from 23 (SPORTENVDETCHASN, 1997). The **FDS** CAR the bv this system (EnSafe, September 10, 1998), identified this area as FDS Area 20, requiring additional assessment due to the residual petroleum contamination observed during the pipeline IM activities. 8 9 10 12 14 20 21 22 23 ## 2.7 Zone L Subzone G Investigation In 1997, EnSafe commenced the investigation of Zone L, to address possible releases from the CNC railroads, and storm water and sanitary sewer systems. Zone L, Subzone G included some sewer lines which traversed the HFF area. Twenty direct push technology (DPT) soil and 30 DPT groundwater samples were collected for VOCs, metals, and cyanide. Fourteen hand-auger soil borings advanced during the investigation and two monitoring wells installed at Subzone G were analyzed for VOCs, semivolatile organic compounds (SVOCs), metals, cyanide, chlorinated pesticides, and polychlorinated biphenyls (PCBs). ## 2.8 FDS Investigation In 1996, EnSafe commenced investigation of the CNC FDS. The FDS investigations, performed subsequent to the ESE and KEMRON studies, focused on areas of petroleum related contamination associated with specific releases from the FDS and areas of likely release. The FDS investigation performed by EnSafe attempted to identify system-wide problems associated with petroleum releases from previous operation of the CNC FDS. The FDS investigation encompassed all buried and above ground fuel pipelines within the CNC area, and storage tanks associated with this piping. The investigation covered areas both inside, adjacent to, and outside the HFF area. The phased investigation commenced with a DPT (Phase I) TPH soil survey along the various fuel pipelines throughout CNC to identify areas of aggregate petroleum contamination. These biased DPT screening samples were collected from areas most likely to have been impacted (i.e., surface where the pipelines and valves were at the surface and subsurface adjacent to buried pipelines). Areas with TPH results greater than 50 mg/kg diesel range organics (DRO) or 50 μ g/kg gasoline range organics (GRO) were targeted for Phase II, constituent specific soil and groundwater sampling and designated as Areas 1-18. During Phase II, discrete samples were collected from these areas and analyzed for standard analytical parameters (VOCs, SVOCs, pesticides and PCBs, metals, and cyanide). 3 5 7 8 12 14 15 24 Areas 19 and 20, adjacent to the HFF, were later added to this group of sites. DPT soil and groundwater sampling, and well installation and sampling, was performed at Areas 19 and 20 in 1999. The FDS CAR (EnSafe, September 10, 1998) found that Areas 8, 12, 13, 14, and 15 exhibited limited soil and groundwater contamination associated with the FDS. Intrinsic remediation was recommended for soil at Areas 8, 12, 13, and 14, along with monitoring of groundwater. No further action was recommended for soil or groundwater at Area 11 and 15. Areas 19 and 20 have not yet been submitted to SCDHEC, because the additional results are pending. Figures 2-1 and 2-2 on pages 23 and 24 present the analytical suites by soil and groundwater, respectively, for all EnSafe samples collected in and adjacent to the HFF area. Table 2.1 on page 32 presents the Phase I TPH analytical results of the screening samples collected during the FDS investigation in and adjacent to the HFF. Figures 2-3 and 2-4 on pages 25 and 26 present the Phase I TPH data for surface and subsurface soil, respectively. Phase II soil samples were collected from areas of elevated TPH. Phase II soil samples were analyzed for constituent specific analyses. Table 2.2 on page 34 presents the Phase II samples that were collected within and adjacent to the HFF area during the FDS investigation. Of the 18 areas found to require further evaluation under Phase II, Areas 8, 11, 12, 13, 14, and 15 are adjacent to the HFF area. The Phase II soil analytical results for these areas are presented in Table 2.3 on page 35. Areas of potential groundwater contamination were identified for investigation, based on the FDS Phase I/II soil investigation. Monitoring wells were installed so that
groundwater samples could be collected from the saturated backfill material surrounding the pipeline or at a comparable depth. Table 2.4 on page 44 details the monitoring wells that were sampled in conjunction with the FDS areas adjacent to the HFF. The analytical data summary for these samples are presented in Table 2.5 on page 46. 3 4 5 12 13 18 19 20 2.8.1 Area 8 Area 8, associated with FDS Phase I sample FDSSC04701, had TPH-GRO results of 19,000 μ g/kg, prompting subsequent Phase II soil and groundwater sampling (Table 2.1). Phase II sample FDSSC47A exhibited total napthalenes above the respective RBSL. All VOCs and metals at this boring were below appropriate soil screening standards (Table 2.3). No VOCs were detected in samples from the Area 8 monitoring wells. The groundwater RBSL for total PAHs was exceeded during the first, but not the second, sampling event at Area 8. No RBSLs for groundwater metals were exceeded at Area 8. No groundwater RBSL constituents were exceeded in downgradient well FDS08D, which was installed later at the site (Table 2.5). Subsequent to the installation and sampling of FDS08D, it was recommended that two quarterly monitoring events of the Area 8 wells be conducted. If concentrations remain below groundwater RBSLs during this monitoring program, it was recommended that these results be used to support a no further action decision for soil and groundwater at Area 8 (EnSafe, June 30, 1999). 2.8.2 Area 11 The Phase I TPH-GRO sample results for soil boring FDSSC05101 was 42.75 μ g/kg, prompting subsequent Phase II soil and groundwater sampling within Area 11 (Table 2.1). The primary sample result was 77.6 μ g/kg TPH-GRO. This value is an average of the primary and duplicate sample collected at this location. No VOCs were detected in subsurface soil at Area 11. All RBSL SVOCs and metals detected at Area 11 were below their respective soil screening standards (Table 2.3). No RBSL VOCs or metals were exceeded in groundwater samples from the Area 11 21 monitoring wells. No RBSL SVOCs were detected in groundwater at Area 11 (Table 2.5). 22 7 8 9 12 13 16 20 21 Because no groundwater RBSLs were exceeded in either of two sampling events at Area 11, the FDS CAR (EnSafe, September 10, 1998) recommended and SCDHEC concurred no further action for this area. ### 2.8.3 Areas 12, 13, and 14 The Phase I TPH-GRO sample results for soil borings FDSSC06501, FDSSC6601, and FDSSC6701 were 147 μ g/kg, 67 μ g/kg, and 106 μ g/kg, respectively, prompting subsequent Phase II soil and groundwater sampling within Areas 12, 13, and 14 (Table 2.1). RBSL VOCs and metals were below their respective screening levels at Areas 12, 13, and 14. The RBSL for total naphthalenes was exceeded at FDCSC06601 and FDSSC06701 (Table 2.3). No RBSL VOCs were detected in groundwater samples from Areas 12, 13, and 14. RBSL SVOCs were below their respective screening levels at Area 12, 13, and 14. The RBSL arsenic (50 μ g/L) was exceeded during the second sampling event at location FDS13A (210 μ g/L). During the third sampling event at FDS13A, arsenic (18.3 μ g/L) was below the RBSL. To support the FDS CAR (EnSafe, September 10, 1998) recommendation of intrinsic remediation for the total naphthalenes detected in soil, the follow-on Letter Report for these areas (EnSafe, June 30, 1999) recommended limited monitoring of groundwater for these areas. This report recommended that groundwater at well FDS14B downgradient of FDSSC06701 and wells FDS13B and FDS13C downgradient of FDSSC06601 be sampled and analyzed for RBSL SVOCs two more times at three-month intervals to demonstrate that soil contaminants are not adversely impacting groundwater. ### 2.8.4 Area 15 The Phase I TPH-GRO sample results for surface-soil boring FDSSH02301 was 501 μ g/kg, 2 prompting subsequent Phase II soil and groundwater sampling within Area 15 (Table 2.1). 2 RBSL VOCs and metals were below their respective screening levels in soil at Area 15. 3 4 5 6 8 9 13 Total naphthalenes were elevated at FDSSH02301. Based on these results, a 3- to 5-foot subsurface soil sample, FDSSH02302, was collected and analyzed to determine the vertical extent of naphthalenes at Area 15. No subsurface soil concentration from this sample exceeded its appropriate RBSL (Table 2.3). No RBSL VOCs/metals were exceeded in groundwater samples from Area 15. No RBSL SVOCs were detected in Area 15 groundwater samples (Table 2.5). Because of the absence of RBSL parameters detected in surface or subsurface soil and groundwater. at Area 15, EnSafe recommended and SCDHEC concurred no further action for soil or groundwater at this area. #### 2.8.5 Other Areas 10 Though not assigned an area, Phase I boring FDSSC084 was given constituent specific analyses 11 during Phase II due to observed conditions. No soil RBSL parameters were exceeded at this 12 location (Table 2.3). Areas 19 and 20 were added to the scope of the FDS investigation in 1998. 14 During 1999 and 2000, field investigations were conducted at Areas 19 and 20 to identify potential impacts to soil and groundwater, and to define the extent of free product contamination, if any, at these sites. DPT soil and groundwater samples were collected at these sites and analyzed for RBSL VOC and SVOC parameters. Initial rounds of DPT sampling focused on areas of contamination identified by previous site investigations the or 19 Subsequent DPT sampling was performed to delineate the extent of contamination around RBSL Table 2.6 on page 57 details the Areas 19 and 20 DPT soil and groundwater exceedances. samples, and their analyses. Table 2.7 on page 61 summarizes the Areas 19 and 20 DPT 22 analytical soil results. Table 2.8 on page 68 presents a summary of the DPT groundwater results 4 5 8 12 13 15 16 for Areas 19 and 20. Seven permanent shallow groundwater monitoring wells were installed at Areas 19, along with six wells at Area 20, to confirm the DPT results and facilitate future monitoring, if required, at these sites. Table 2.9 on page 74 presents a summary of the monitoring well analytical results at Areas 19 and 20. #### 2.8.5.1 Area 19 Area 19 DPT soil data revealed benzene, ethylbenzene, and naphthalenes detected above the appropriate groundwater protection RBSLs, with most exceedances detected near the source area (the former Facility 148) along the southwest side of Building 98. DPT groundwater results for Area 19 revealed benzene, total PAHs, naphthalene, 2-methylnapthalene, and chrysene concentrations above the appropriate groundwater RBSLs. These results revealed that groundwater adjacent to Building 98 has been impacted by petroleum constituents, primarily within the same area of impacted soil adjacent to the southwest side of Building 98. Groundwater analytical data from the Area 19 monitoring wells exhibited no RBSL exceedances. The monitoring well results showed that the area of localized groundwater contamination defined during the DPT sampling was appropriately delineated at this site. The FDS Car Addendum will recommend that Area 19 monitoring wells be sampled quarterly for a period of one year. The recommended analyses for these quarterly samples will be 18 RBSL VOCs and SVOCs to ensure that constituents detected in soil and groundwater at Area 19 are not migrating off-site. 2 3 5 10 11 16 17 18 19 #### 2.8.5.2 Area 20 Area 20 DPT soil analytical data revealed that benzene, naphthalene, and total naphthalenes were present above the appropriate groundwater protection RBSLs (Table 2.7). Most exceedances were detected adjacent to the footprint of the Viaduct Road pipeline IM and also northwest of the removal area along the fuel pipeline corridor which parallels Hobson Avenue. DPT groundwater analytical results for Area 20 detected total PAHs, naphthalene, 2-methylnapthalene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and chrysene above the appropriate RBSLs (Table 2.8). These results revealed that naphthalene and total PAHs exceeded their RBSLs at sample locations northwest of the pipeline removal area along Hobson Avenue. Petroleum contaminated soil in this area is the likely source of the groundwater contamination at this locale. Groundwater analytical data from the Area 20 monitoring wells exhibited no RBSL exceedances (Table 2.9). The monitoring well results showed that the area of localized groundwater contamination defined during the DPT sampling was appropriately delineated at this site. The FDS Car Addendum will recommend that Area 20 monitoring wells be sampled quarterly for a period of one year. The recommended analyses for these quarterly samples will be RBSL VOCs and SVOCs to ensure that constituents detected in soil and groundwater at Area 20 are not migrating off-site. ### 3.0 HOBSON FUEL FARM INVESTIGATION As mentioned in Section 1.0, the primary purpose of the HFF investigation was to perform a 20 focused review of previous investigations to determine whether the HFF area had been adequately 21 characterized to support site closeout requirements. Particular interest was placed on the 22 possibility that RCRA constituents might have been overlooked, since the majority of the site was 23 investigated using SCDHEC's petroleum program guidelines. The secondary purpose was to 24 6 7 8 13 15 17 18 23 25 provide adequate information to assist the Project Team in making a site disposition recommendation to the RDA. DPT soil (surface [0-1 ft bgs] and subsurface soil [3-5 ft bgs] intervals) and shallow groundwater samples were collected to characterize the nature and extent of soil and groundwater contamination at the site. The soil and groundwater samples were analyzed for VOC and SVOC parameters. Table 3.1 on page 77 presents the soil and groundwater DPT samples collected and the analyses performed at the HFF. Figure 3-1 on page 27 illustrates the HFF sample locations. ## 3.1 Data Gaps The HFF soil and groundwater DPT sampling points were located to fill the
following data gaps: - No constituent specific soil samples were collected within the HFF area during the FDS Phase II investigation. This was because FDS Phase I TPH sampling results from within the HFF area were below the 50 μ g/kg threshold, and thus did not trigger Phase II sampling. - The need to adequately confirm the contaminated area delineated around tanks 3916 and 3917 by the ESE and KEMRON investigations. - The need to completely delineate petroleum contamination in soil and groundwater within the HFF and identify potential RCRA concerns prior to property transfer. ## 3.2 HFF Soil Sample Results Ten DPT soil borings, plus four follow-on borings (data results pending as of this report), were advanced at the HFF. No free product was observed. Surface and subsurface soil results from these borings were compared to the appropriate RBSLs. Table 3.2 on page 79 presents a summary of the analytical results of the DPT soil sampling. Figures 3-2 and 3-3 on pages 28 and 29 provide data summaries of surface soil and subsurface soil results, respectively, for all recently collected soil samples from investigations conducted within the HFF and adjacent areas. 2 3 5 6 7 10 12 15 16 18 19 20 Two VOCs, acetone and methylene chloride, were detected in surface soil. Neither of these analytes is regulated by a RBSL concentration. In addition, none of these exceeds any other applicable screening value. Four VOCs, acetone, chlorobenzene, ethylbenzene, and methylene chloride were detected in subsurface soil at the HFF. Of these, only ethylbenzene is a RBSL constituent, and the subsurface soil detection at location HFFSP002 (2 μ g/kg) was below the groundwater protection RBSL of 1,260 μ g/kg. Twenty-one SVOCs were detected in soil during the HFF investigation. Of these, total naphthalenes, naphthalene, 2-methylnaphthalene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chyrsene and dibenz(a,h)anthracene are regulated fuel constituents. Seven of these parameters exceeded the dermal protection RBSLs applicable to surface soil. These surface soil exceedances were limited to locations HFFSP004, HFFSP006 and HFFSP007. The subsurface concentrations of these compounds at these locations were all either non-detect or below the applicable RBSL. Fourteen other SVOCs were detected in surface soil. Of these, only benzo(a)pyrene and indeno(1,2,3-cd)pyrene exceeded the applicable RBCs of 87 μ g/kg and 870 μ g/kg respectively. Significant subsurface soil impact was limited to location HFFSP008. Concentrations of RBSL parameters total naphthalenes and naphthalene exceeded the RBSL of 210 μ g/kg. No other subsurface constituents exceeded applicable screening values. ## 3.2.1 HFF Soil Analytical Summary As previously discussed in this report, Figure 2-1 on page 23 illustrates the locations and 21 analytical parameter suites for soil samples collected as part of the investigation of the FDS, Zone 22 L RFI and the HFF. The area was initially screened for surface and subsurface TPH as part of 23 the FDS investigation. The surface and subsurface TPH results are summarized in Figures 2-3 24 and 2-4 on pages 25 and 26 respectively. 6 12 16 18 19 20 TPH was detected, less than 100 μ g/kg at several surface soil sample locations. The highest detection, FDSSH023 (501 μ g/kg), was further investigated as Area 15 within the HFF. Two others are located within the area of contaminated soil identified by KEMRON near former tanks 3900G and 3900H, FDSSH001 (10 μ g/kg) and FDSSH006 (9.0 μ g/kg). The other four locations FDSSH016 (32 μ g/kg), FDSSH018 (10 μ g/kg), FDSSH021 (10 μ g/kg), and FDSSH022 (10 μ g/kg) are located near tanks 3900E and 3900F. TPH was detected in subsurface locations FDSSC081 (9 μ g/kg), FDSSC082 (8 μ g/kg) and FDSSC083 (8 μ g/kg), which are associated with underground fuel pipelines, below the screening value of 50 μ g/kg. TPH detected in subsurface locations FDSSC047 (19,000 μ g/kg), FDSSC065 (147 μ g/kg), FDSSC066 (67 μ g/kg) and FDSSC067 (106 μ g/kg) exceeded the 50 μ g/kg value. These detections resulted in further investigation as Areas 8, 12, 13 and 14 respectively. Figure 3-2 on page 28 presents the results of a comparison of the constituent-specific analytical results to the RBCA RBSLs and to Region III surface soil RBCs (THQ = 0.1). Areas potentially problematic to redevelopment of the HFF area are HFFSP004, HFFSP005, HFFSP006 and HFFSP007. The compounds of concern in these four locations are SVOCs, commonly associated with petroleum contamination. These four locations are associated with tanks 3900E and 3900F. Other potential problem locations are 037SP003, 037SP004 and 037SP041. These exceedances were driven by arsenic exceeding the RBC. All were below the Zone G background concentration for arsenic of 17.2 μ g/kg. Figure 3-3 on page 29 presents the results of a comparison of the constituent-specific analytical 21 result to the RBCA groundwater protection RBSL and to site-specific SSLs (AOC 619/SWMU 4). 22 Potentially problematic areas are associated with: two points in Area 20, F20SP001 and 23 F20SP041; and HFFSP008. The total naphthalene concentration detected at HFFSP008 is most likely attributable to residual petroleum contamination. The extent is limited by surrounding sample points. The Area 20 points, F20SP041 and F20SP001 are expected to be outside of the footprint of the planned redevelopment project and will be addressed in the CAR for Area 20. #### 3.3 HFF Groundwater Sample Results Seven DPT groundwater samples were collected at the HFF. Table 3.3 on page 82 presents a summary of the analytical results of the DPT groundwater sampling. Figure 3-4 on page 30 provides a data summary of for all recently collected groundwater samples from investigations conducted within the HFF and adjacent areas. DPT groundwater results for the HFF revealed detections of VOCs and SVOCs. #### 3.3.1 HFF Groundwater Analytical Summary As previously discussed, Figure 2-2 on page 24 illustrates the locations and analytical parameter suites for groundwater samples collected as part of the investigation of the FDS, Zone L RFI and the HFF. Also shown on Figure 2-2 is the shallow groundwater potentiometric surface contours. Shallow groundwater flow is variable but is generally away from the HFF area. Figure 3-4 on page 30 presents the results fo a comparison of the constituent-specific analytical results to the RBCA groundwater RBCLs and Region III tapwater RBCs. Potentially problematic areas are associated with locations: HFFGP010, F20GP044, F20GP037 and FDS20D which are located near former tanks 3900G and 3900H. With the exception of F20GP044, these do not appear to be attributable to petroleum releases. Other potential problematic areas are associated with HFFGP006, HFFGP012, HFFGP013 and 037602. These locations are near tanks 3900E and 3900F. However, the constituents do not appear to be petroleum related. 1 3 4 5 6 9 10 11 12 17 18 The VOCs detected were 1,2-dichloroethene (total), and methylene chloride. The SVOCs detected were benzoic acid and bis(2-ethylhexyl)phthalate. None of these constituents are RBSL parameters. The concentration of 1,2-dichloroethene, $21 \mu g/L$, exceeded the MCL of $5 \mu g/L$ and the tapwater RBC of $5.5 \mu g/L$. No other screening values were exceeded. None of the compounds detected in groundwater are considered to be fuel constituents. #### 4.0 CONCLUSIONS This expedited evaluation of the HFF was performed to gain a comprehensive understanding of current soil and groundwater conditions to facilitate property transfer and subsequent development activities. As a result, the potentially problematic areas near the anticipated area of construction, tanks 3916 and 3917, were the primary focus of delineation sampling. Data gaps in soil still exist near tanks 3900E and 3900F. However, delineation in those areas was not included in EnSafe's scope of work for the HFF. In the area targeted for redevelopment, tanks 3916 and 3917, surface soil exhibited no petroleum related or RCRA constituents which might be a concern. Subsurface soil was only a potential concern at location HFFSP008, where petroleum related SVOCs were detected at concentrations that have the potential to leach to shallow groundwater. This area is a single point exceedance that has been fully delineated should the Navy decide to mitigate the problem. However, EnSafe feels there is no leaching concern because of the conservative screening levels used. Considering that a building over the site would inhibit percolation and subsequent potential for leaching, the Navy may choose to manage the risk in other ways rather than perform a soil removal at the HFF. | 5.0 REFERENCES | 1 | |--|----------------| | EnSafe, Inc. (September 10, 1998). Fuel Distribution System Contamination Assessment Report | 2 | | NAVBASE Charleston, South Carolina. | 3 | | EnSafe, Inc. (June 30, 1999). Letter Report, Fuel Distribution System Area 8, Charleston Naval Complex, Charleston, South Carolina. | 4 | | EnSafe, Inc. (June 30, 1999). Letter Report, Fuel Distribution System Areas 12, 13, and 14, Charleston Naval Complex, Charleston, South Carolina. | 6
7 | | EnSafe, Inc. (January 27, 2000). Letter Report, Fuel Distribution System Area 15, Charleston Naval Complex, Charleston, South Carolina. | 8
9 | | KEMRON, Inc. (1990). Contamination Assessment Report/Remedial Action Plan, Defense Fuel Supply Point, Charleston Naval Base, Charleston, South Carolina. | 10
11 | | KEMRON, Inc. (1992). Remedial Activities Summary Report, Defense Fuel Supply Point,
Charleston Naval Base, Charleston, South Carolina. | 12
13 | | NFESC. (April, 1996). Site Characterization
and Analysis Penetrometer System Characterization at AOC 626, Charleston Naval Supply Center Fuel Farm. | 14
15 | | S&ME, Inc. (May 28,1992). Report of the Soil Sampling and Analysis, Environmental Specification Preparation, 800 Foot 18-inch Fuel Pipeline, Charleston Naval Supply Center, Charleston, South Carolina. | 16
17
18 | | SPORTENDETCHASN. (1997). Charleston Naval Complex, Building 148 Closure Report. | 19 | Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 **FIGURES** # Figure 3-1 DPT Sampling Points Hobson Fuel Farm 200 Feet 200 #### Legend HFFGP001 - DPT GW Sampling Point HFFSP001 - DPT Soll Point DPT Sampling Point Est. Contaminated Soil, Kemron, 1996-7 17/2 Est. Contaminated Soil, Kemron, 1990 Zone F Zone G file spec: hff_dpt_sp_plum Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 ### **TABLES** ## Table 2.1 Phase I Detected Soil TPH Concentrations Fuel Distribution System | Sample ID | Result | Interval | Area | | | | |--------------------------|--------------------|------------|---|--|--|--| | TPH-GRO Gasoline (μg/kg) | | | | | | | | PDSSC02501 | 10:00 | Subsurface | | | | | | FDSSC03201 | 27.00 | Subsurface | | | | | | FDSSC03301 | 18:00 | Subsurface | | | | | | FDSSC03501 | ND | Subsurface | *************************************** | | | | | FDSSC04301 | 23.70 | Subsurface | | | | | | FDSSC04401 | 35.80 | Subsurface | *************************************** | | | | | FDSSC04501 | ND | Subsurface | | | | | | FDSSC04601 | 11.10 | Subsurface | | | | | | FD\$\$C04701 | 19000,00 | Subsurface | Area 8 | | | | | FDSSC47A01 | ND | Subsurface | | | | | | FDSSC04801 | 8.88 | Subsurface | | | | | | FDSSC04901 | 7.12 | Subsurface | | | | | | FDSSC05001 | 15:30 | Subsurface | | | | | | FDSSC05101 | 42.75 ^a | Subsurface | Area 11 | | | | | FDSSC05201 | 8:56 | Subsurface | | | | | | FDSSC05301 | 24,60 | Subsurface | | | | | | FDSSC05401 | 16.80 | Subsurface | | | | | | FDSSC06401 | 8.00 | Subsurface | | | | | | FDS9C06501 | 147.00 | Subsurface | Area 12 | | | | | FDSSC06601 | 67.00 | Subsurface | . Area 13 | | | | | FDSSC06701 | 106.00 | Subsurface | Area 14 | | | | | FDSSC07101 | ND | Subsurface | | | | | | FDSSC07601 | ND | Subsurface | | | | | | FDSSC07801 | ND | Subsurface | | | | | | FDSSC07901 | ND | Subsurface | | | | | | FDSSC08001 | ND
7 | Subsurface | | | | | | FDSSC08101 | 9.00 | Subsurface | | | | | Table 2.1 Phase I Detected Soil TPH Concentrations Fuel Distribution System | Sample ID | Result | Interval | Area | |--------------|--------|------------|---| | FDSSC08201 | 8,00 | Subsurface | | | FDSSC08301 | 8.00 | Subsurface | | | FDSSC08401 | 7.00 | Subsurface | | | FDSSH00101 | 10.00 | Surface | Area 17 | | FD\$\$H00201 | ND | Surface | | | FDSSH00301 | ND | Surface | Area 16 | | FDSSH0040i | ND | Surface | | | FDSSH00501 | ND | Surface | | | FDSSH00601 | 9.00 | Surface | | | FDSSH00701 | ND | Surface | | | FD\$\$H00801 | ND | Surface | | | FDSSH00901 | ND | Surface | | | FD\$\$H01001 | ND. | Surface | | | FDSSH01101 | ND | Surface | *************************************** | | FDSSH01201 | 9.00 | Surface | | | FDSSH01301 | ND | Surface | | | FDS\$H01401 | ND | Surface | | | FDSSH01501 | ND | Surface | | | FDSSH01601 | 32,00 | Surface | | | FDSSH01701 | ND | Surface | | | FDSSH01801 | 10.00 | Surface | | | FDSSH01901 | ND | Surface | *************************************** | | FD\$\$H02001 | ND | Surface | | | FDSSH02101 | 10.00 | Surface | | | FDSSH02201 | 10.00 | Surface | | | FDSSH02301 | 501.00 | Surface | Area 15 | a = Average of original duplicate concentrations. Original sample concentration was 77.6 μg/kg. b = Included based on visual observation of gross contamination. ND = Not Detected. Bolded concentrations exceed 50 μg/kg (GRO) or 50 mg/kg (DRO). ### Table 2.2 FDS Soil Samples - Phase II Fuel Distribution System | Boring Location | Sample Identifier | Date | Sample Interval | Remarks | |-----------------|---------------------------|--------------------|----------------------|-------------------------------------| | FDSSC47A | FDSSC47A01 | 9/24/96 | 13,5-15.5 | No unusual observations logged | | FDSSC051 | FDSSC05101 | 1/13/97 | 5-7 | | | FDSSC065 | PDSSC06501 | 9/25/96 | 6.3-10.6 | Strong fuel odor noted | | FDSSC066 | FDSSC06601 | 12/4/96 | 8.5-10.5 | Strong fuel odor noted | | FDSSC067 | FDSSC06701
FDSCC06701* | 12/4/96
12/4/96 | 8.5-10.5
8.5-10.5 | Strong feel odor nated, 173 ppm FID | | FDSSC084 | FDSSC08401 | 10/02/96 | 7-11 | Slight fuel odor noted | | FD8SH023 | FDSSH02301 | 10/17/96 | 0-1 | Strong fuel odor noted | #### Notes: = Phase II sample collected concurrently with Phase I TPH sample based on field observations. Duplicates were analyzed for Appendix IX parameters (metals, pesticides/PCBs, herbicides, organophosphorous (OP) pesticides, dioxins, SVOAs, VOAs); cyanide, and hex-chrome, Level IV. FID = Flame ionization detector ppm = parts per million. Samples analyzed using SW-846 methods (metals, pesticides/PCBs, SVOAs, VOAs) at data quality objective (DQO) Level III. | Parameters | Location | Conc. | RBSL/SSL | Background | |----------------------------|--------------|-----------|-------------|------------| | Area 8 | | | | | | TPH - GRO (μg/kg) | | | - | | | Gasoline | FDSSC04701 | 19000 | NL/NL | NA. | | Volatile Organic Compounds | (μg/kg) | | | | | Toluene | FDSSC47A01 | 4 | 1622/12000 | NA . | | Semivolatile Organic Compo | unds (μg/kg) | | | | | Total Naphthalenes | FDSSC47A01 | 5210 | 210/84000 | NA | | 2-Methylnaphthalene | FDSSC47A01 | 5100 | NL/126000 | NA | | Naphthalene | FDSSC47A01 | 110 | NL/84000 | NA | | Acenaphthene | FDSSC47A01 | 430 | NL/570000 | NA | | Anthracene | FDSSC47A01 | 280 | NL/12000000 | NA | | Benzo(a)anthracene | FDSSC47A01 | . 300 | 73084/2000 | NA | | Dibenzofuran | FDSSC47A01 | 330 | NL/50000 | NA | | Fluoranthene | FDSSC47A01 | 190 | NL/4300000 | NA | | Pluorene | FDSSC47A01 | 570 | NL/560000 | NA | | Phenanthrene | FDSSC47A01 | 1600 | NL/1380000 | NA | | Pyrene | FDSSC47A01 | 710 | NL/4200000 | NA | | Inorganics (mg/kg) | | | | | | Aluminum (Al) | FDSSC47A01 | 15000 | NE/1000000 | 23600 | | Arsenic (As) | FDSSC47A01 | 16 | NL/29 | 15.5* | | Barium (Ba) | FDSSC47A01 | 27.3 | NL/3600 | 64.5 | | Beryllium (Be) | FDSSC47A01 | 1 | NL/63 | 1.63 | | Calcium (Ca) | FDSSC47A01 | 30800 | NL/NL | NL | | Chromium (Cr) | FDSSC47A01 | 29.6 | NL/1000000 | 43.4° | | Cobalt (Co) | FDSSC47A01 | 5.6 | NL/2000 | 8.14 | | Copper (Cu) | FDSSC47A01 | 18.9 | NL/920 | 32.6 | | Iron (Fe) | FDSSC47A01 | 19600 | NL/NL | NL | | and they | 11000041701 | * * 70.00 | 14131315 | .164 | | Parameters | Location | Conc. | RBSL/SSL | Background | |------------------------------|--------------|-------|--------------|-------------------| | Inorganics (mg/kg) | | | | | | Lead (Pb) | FDSSC47A01 | 30.3 | NL/400 | 66.3 | | Magnesium (Mg) | FDSSC47A01 | 4270 | NL/NL | NL | | Мапуалезе (Мл) | FD\$\$C47A01 | 186 | NL/1100 | 291 | | Mercury (Hg) | FDSSC47A01 | 0.09 | NL/2.1 | 0.31 | | Potassium (K) | FDSSC47A01 | 1870 | NL/NL | NL | | Selenium (Se) | FDSSC47A01 | 1.00 | NL/5 | 1.26 | | Sodium (Na) | FDSSC47A01 | 2300 | NL/NL | NL | | Vanadium (V) | FDSSC47A01 | 42.7 | NL/6000 | 72.5 | | Zinc (Zii) | FDSSC47A01 | 77.9 | NL/12000 | 145 | | Area 11 | | | | | | TPH - GRO (μg/kg) | | | | | | Gasoline | FDSSC05101 | 42,75 | NL/NL | NA | | Semivolatile Organic Compour | nds (μg/kg) | | | | | bis(2-Ethylhexyl)phthatate | FDSSC05101 | 1500 | NL/3600000 | •NA | | Chrysene | FDSSC05101 | 80 | 12998/160000 | NA | | Inorganics (mg/kg) | | | <u> </u> | | | Aluminum (Al) | FDSSC05101 | 5690 | NL/1000000 | 23600 | | Barium (Ba) | FDSSC05101 | 23.3 | NL/1600 | 64.5 | | Betyllium (Be) | FDSSC05101 | 0.24 | NL/63 | 1.63 | | Cadmium (Cd) | FDSSC05101 | 0.05 | NL/8 | 0.48 | | Calcium (Ca) | FDSSC05101 | 1770 | NL/NL | NI. | | Chromium (Cr) | FDSSC05101 | 6.1 | NL/1000000 | 43.4 ^a | | Cobait (Co) | FD\$\$C05191 | 0.67 | NL/2000 | 8 14 | | Copper (Cu) | FDSSC05101 | 2.6 | NL/920 | 32.6 | | Iron (Fe) | FD\$\$C05101 | 4300 | NL/NL | NL | | Parameters | Location | Conc. | RBSL/SSL | Background | |-----------------------------|--------------------------|----------------|--------------|--| | Inorganics (mg/kg) | -,,,,,, | | | | | Lead (Pb) | FD\$8C05101 | 8.8 | NL/400 | 66.3 | | Magnesium (Mg) | FDSSC05101 | 269 | NL/NL | NL | | Manganese (Mn) | FD\$\$C05101 | 27.1 | NL/1100 | 291 | | Mercury (Hg) | FDSSC05101 | 0.25 | NL/2.1 | 0.31 | | Nickel (Ni) | FDSSC05101 | 2.8 | NL/130 | 18.3 | | Sodium (Na) | FDSSC05101 | 175 | NL/NL | NL | | Thallium (Tl) | FDSSC05101 | 0.41 | NL/0.95 | 0.95 | | Vanadium (V) | FDSSC05101 | 15.5 | NL/6000 | 72.5 | | Zinc (Zn) | FDSSC05101 | 99 | NL/12000 | 145 | | Area 12, 13, 14 | | _ | | | | TPH - GRO (μg/kg) | | | 10.10 | | | Gasoline | FDSSC06501
FDSSC06601 | 147
67 | NL/NL | NA | | | FDSSC06701 | 106 | | | | Volatile Organic Compounds | | | | | | Carbon disulfide | FDSSC06601
FDSSC06701 | 2
1 | NL/32000 | NA | | Toluene | FDSSC06501
FDSSC06601 | 47
4 | 1622/12000 | NA | | | FDSSC06701 | 12 | | | | Xylene (Total) | FDSSC06601 | 45 | 42471/148000 | NA | | | FDSSC06701 | 3 | | | | Semivolatile Organic Compou | nds (µg/kg) | | | | | Total Naphthalenes | FDSSC06501 | 62 | 210/84000 | NA | | | FDSSC06601
FDSSC06701 | 6500
4700 | | | | 2-Methylnaphthalene | FDSSC06501 | 62 | NL/126000 | NA | | | FDSSC06601 | 3100 | | | | | FDSSC06701 | 4700 | | | | Naphthalene | FDSSC06601 | 3400 | NL/84000 | NA
NA | | Acenaphthlene | FDSSC06501
FDSSC06601 | 130
3000 | NL/570000 | INA | | | FDSSC06701 | 1400 | | heenen total and the second and the | | Anthracene | FD8SC06501 | 110 | NL/12000000 | N.A | | | FDSSC06601
FDSSC06701 | 3900
• 1450 | | | Table 2.3 Analytes Detected
in Soil Fuel Distribution System | Parameters | Location | Conc. | RBSL/SSL | Background | |---|--|---------------------------|--------------------------|--------------------| | Semivolatile Organic Compound | ds (μg/kg) | | | | | Henzo(a)anthracene | FDSSC06501
FDSSC06601
FDSSC06701 | 86
1800
1355 | 73084/2000 | NA | | Benzo(b)fluoranthene | FDSSC06501
FDSSC06601
FDSSC06701 | 72
630
615 | 29097/5000 | NA | | Benzo(k)fluoranthene | FD\$\$C06601
FD\$\$C06701 | 710
670 | 231109/49000 | NA | | Benzo(a)pyrene | FDSSC06601
FDSSC06701 | 930
935 | NL/8000 | NA | | Benzo(g,h,i)perylene | FDSSC06601
FDSSC06701 | 550
655 | NL/4.66E+08 | NA | | Chrysene | FDSSC06501
FDSSC06601
FDSSC06701 | 70
2000
1510 | 12998/160000 | NA | | Dibenz(a,h)anthracene | FDSSC06601
FDSSC06701 | 120
170 | 87866/2000 | NA | | Dibenzofuran | FDSSC06601
FDSSC06701 | 2700
1085 | NL/50000 | NA | | Di-n-octyl phthalate
Fluoranthene | FDSSC06701
FDSSC06501
FDSSC06601
FDSSC06701 | 45
120
6000
2700 | NL/4300000
NL/4300000 | NA
NA | | Fluorene | FDSSC06501
FDSSC06601
FDSSC06701 | 140
4400
2000 | NL/560000 | NA | | Indeno(1,2,3-cd)pyrene | FDSSC06601
FDSSC06701 | 460
460 | NL/14000 | NA | | Phenamhrene | FDSSC06601
FDSSC06701 | 240
15000
6150 | NL/1380000 | NΔ | | Pyrene | FDSSC06501
FDSSC06601
FDSSC06701 | 290
5300
3700 | NL/4200000 | NA | | Dioxin (ng/kg) | | | | ` | | Dioxin(2,3,4,8-TCDD TEQs ¹) | FDSSC06701 | 0.0847 | NL/1900 | NA | | Inorganics (mg/kg) | | | | | | Aluminum (Al) | FDSSC06501
FDSSC06601
FDSSC06701 | 28400
15400
12050 | NL/1000000 | 23 60 0 | | Antimony (Sb)
Arsenic (As) | FDSSC06501
FDSSC06501
FDSSC06601 | .51
17
10.2 | NL/5
NL/29 | ND
15:5° | Table 2.3 Analytes Detected in Soil Fuel Distribution System | Parameters | Location | Conc. | RBSL/SSL | Background | |----------------------------|--|-------------------------------|------------|---------------------| | Inorganics (mg/kg) | | | | | | Batium (Ba): | FDSSC06501
FDSSC06601
FDSSC06701 | 40.6
33.9
25.65 | NL/1600 | 64;5 | | Beryllium (Be) | FDSSC06501
FDSSC06601
FDSSC06701 | 1.3
.76
.62 | NL/63 | 1.63 | | Calcium (Ca) | FDSSC06501
FDSSC06601
FDSSC06701 | 14500
40000
24100 | NL/NL | NL | | Chromium (Cr) | FDSSC06501
FDSSC06601
FDSSC06701 | 42.9
28.7
24.55 | NL/1000000 | 43.4 ^a | | Cobalt (Co) | FDSSC06501
FDSSC06601
FDSSC06701 | 6.3
3.4
3.1 | NL/2000 | 8:14 | | Copper (Cu) | FDSSC06501
FDSSC06601
FDSSC06701 | 24.8
18.5
14.25 | NL/920 | 32.6 | | Iron (Fe) | FDSSC06501
FDSSC06601
FDSSC06701 | 307(X)
178(X)
239(X) | NL/NL | NL | | Lead (Pb) | FDSSC06501
FDSSC06601
FDSSC06701 | 42.9
28.2
27.6 | NL/400 | 66.3 | | Magnesium (Mg) | FDSSC06501
FDSSC06601
FDSSC06701 | 4840
6460
2585 | NIJNL | NL | | Manganese (Mπ) | FDSSC06501
FDSSC06601
FDSSC06701 | 582
163
238.5 | NL/1100 | 291 | | Mercury (Hg) | FDSSC06501
FDSSC06601
FDSSC06701 | .22
2
.175 | N1./2.1 | 0.31 | | Nickel (Ni) | FDSSC06501
FDSSC06601
FDSSC06701 | 13.9
10.1
8.15 | NL/130 | 18.3 | | Potassium (K) | FDSSC06501
FDSSC06601
FDSSC06701 | 2580
2260
1455 | NE/NE | NL | | Selenium (Se) | FDSSC06501
FDSSC06701 | 1.1
.87 | NL/5 | 1.26 | | Sodium (Na) | FDSSC06601
FDSSC06701 | 5770
2340 | NLINL | NL | | Thallium (Tl) Vanadium (V) | FDSSC06501
FDSSC06501
FDSSC06601
FDSSC06701 | .57
69:1
- 30:2
34:8 | NL/6000 | 0.95
72.5 | | Parameters | Location | Conc. | RBSL/SSL_ | Background | |------------------------------|---|------------|---|------------| | Inorganics (mg/kg) | 1 1111111111111111111111111111111111111 | | | | | Zirk (Zn) | FDSSC06501
FDSSC06601 | 97
69 | NL/12000 | 145 | | | FDSSC06701 | 58.55 | | | | Area 15 | | | | | | TPH - GRO (μg/kg) | | | | | | Gasoline | FDSSH02301 | 501 | NL/NL | NA . | | Volatile Organic Compounds | (μg/kg) | | | | | 1,1-Dichloroethane | FD8SH02301 | 85 | NL/23000 | NA | | 1,1,1-Trichloroethane | FDSSH02301 | 48 | NL/2000 | NA | | Benzene | FDSSH02302 | 2 | 5/30 | NA | | Ethylbenzene | FDSSH02301 | 130 | 7800000/13000 | NA | | Methylene Chloride | FDSSH02302 | 2 | NL/20 | NA | | Tetrachloroethene | FDSSH02301 | 13 | NL/60 | NA | | Toluene | FDSSH02301 | 22 | 160000000/12000 | NA. | | Xylene (Total) | FDSSH02301 | 1800 | 160000000/148000 | NA | | Semivolatile Organic Compour | nds (µg/kg) | | | | | Tomi Naphthalenes | FDSSH02301
FDSSH02302 | 8500
25 | 3160000/84000
210/84000 | NA | | 2-Methylnaphthalene | FDSSH02301 | 6800 | NL/126000 | NA | | Naphthalene | FDSSH02301 | 1700 | NL/84000 | NA | | bis(2-ethylhexyl)phthatate | FDSSH02302
FDSSH02302 | 25
130 | NL/3600000
NL/3600000 | NA | | Chrysene | FDSSH02301 | 240 | 88000/160000 | NA . | | Fluorene | FDSSH02301 | 1900 | NL/560000 | NA | | Phenanthrene | FDSSH02301 | 1900 | NL/1380000 | NA | | Pyrene | FDSSH02301 | 590 | NL/4200000 | NA | | Pesticides (μg/kg) | | | 114111111111111111111111111111111111111 | 0. 0 | | 4,4-DDE | FDSSH02302 | 12 | NL/54000 | NA | | Endrin | FDSSH02301 | 20 | NL/1000 | NA | Table 2.3 Analytes Detected in Soil Fuel Distribution System | Parameters | Location | Conc. | RBSL/SSL | Background | |---------------------|----------------------------|-----------------|------------|------------| | Pesticides (µg/kg) | | , , | | | | Aroclor-1260 | FD\$\$H02302 | 53 | NL/1000 | NA . | | Heptachlor | FDSSH02301 | 5.3 | NL/23000 | NA | | Heptachlor expoxide | FDSSH02302 | 2.8 | NL/23000 | NA NA | | gamma-Chlordane | FDSSH02301
FDSSH02302 | 3.4
3.2 | NŁ/10000 | NA | | Inorganics (mg/kg) | | | | | | Aluminum (Al) | FDSSH02301
FDSSH02302 | 2820
6950 | NL/1000000 | 18700 | | Arsenic (As) | FDSSH02301
FDSSH02302 | 1.8
2.4 | NL/29 | 17.2 | | Barium (Ba) | FDSSH02301
FDSSH02302 | 13.1
31.3 | NL/1600 | 109 | | Beryllium (Be) | FDSSH02302 | 0.31 | NL/63 | 1.2 | | Cadmium (Cd) | FDSSH02301 | 0,19 | NL/8 | 1.07 | | Calcium (Ca) | FDSSH02301
FDSSH02302 | 13,100
1,220 | NL/NL | NL | | Chromium (Cr) | FDSSH02301
FDSSH02302 | 9.3
13.5 | NL/1000000 | 42.8 | | Cobalt (Co) | FD\$SH02301
FD\$SH02302 | 1.3
1.5 | NL/2000 | 6.60 | | Copper (Cu) | FDSSH02302 | 2.4 | NL/920 | 30.4 | | Iron (Fe) | FDSSH02301
FDSSH02302 | 4,860
10,500 | NL/NL | NL | | Lead (Pb) | FDSSH02301
FDSSH02302 | 29.5
7.9 | NL/400 | 181 | | Magnesium (Mg) | FDSSH02301
FDSSH02302 | 499
646 | NL/NL | NL | | Manganese (Mn) | FDSSH02301
FDSSH02302 | 29.6
34.3 | NL/1100 | 325 | | Mercury (Hg) | FDSSH02301
FDSSH02302 | 0.07
0.05 | NL/2.1 | 1.03 | | Nickel (Ni) | FDSSH02301
FDSSH02302 | 4.2
2.9 | NL/130 | 206 | Table 2.3 Analytes Detected in Soil Fuel Distribution System | Parameters | Location | Conc. | RBSL/SSL | Background | |----------------------------|------------------------------|--------------|-------------|------------| | Inorganics (mg/kg) | | | | | | Potassium (K) | FD\$\$H02301
FD\$\$H02302 | 240
321 | NL/NL | NL | | Selenium (Se) | FDSSH02302 | 0.51 | NL/5 | 1.24 | | Sodium (Na) | FDSSH02302 | 249 | NL/NL | NL | | Thallium (Tl) | FDSSH02301 | 0.47 | NL/0.95 | 0.85 | | Tin (Sn) | FDSSH02302 | 4,9 | NL/11,088 | NL | | Vanadium (V) | FDSSH02301
FDSSH02302 | 10.6
16.1 | NL/6000 | 60.9 | | Zinc (Zn) | FDSSH02301
FDSSH02302 | 66.8
14.8 | NL/12000 | 519 | | Other Areas | | | | | | TPH - GRO (μg/kg) | | | | | | Gasoline | FDSSC08401 | 7 | NL/NL | NA | | Semivolatile Organic Compo | unds (μg/kg) | | | | | Fluoranthene | FDSSC08401 | 75 | N1./4300000 | NA . | | Phenanthrene | FDSSC08401 | 100 | NL/1380000 | NA | | Pyrana | FDSSC08401 | 54 | NL/4200000 | NA | | Inorganics (mg/kg) | | | | | | Aluminum (Al) | FDSSC08401 | 5060 | NE/1000000 | 18700 | | Arsenic (As) | FDSSC08401 | 2.2 | NL/29 | 17.2 | | Barium (Ba) | FDSSC08401 | 19.4 | NL/1600 | 109 | | Beryllium (Be) | FDSSC08401 | 0.31 | NL/63 | 1.63 | | Calcium (Ca) | FDSSC08401 | 1560 | NL/NL | NL. | | Chromium (Cr) | FDSSC08401 | 8.1 | NL/1000000 | 42.8 | | Cobalt (Co) | FD\$SC08401 | 0.71 | NL/2000 | 6.60 | | Iron (Fe) | FDSSC08401 | 6050 | NL/NL | NL | | Lead (Pb) | FDSSC08401 | 5.6 | NL/400 | 181 | | Magnesium (Mg) | FDSSC08401 | 1150 | NL/NL | NL | | Parameters | Location | Conc. | RBSL/SSL | Background | |--------------------|------------|-------------|----------|------------| | Inorganics (mg/kg) | | | | | | Manganese (Mn) | FDSSC08401 | 8 .3 | NL/1100 | 325 | | Nickel (Ni) | FDSSC08401 | 4.7 | NL/130 | 206 | | Potassium (K) | FDSSC08401 | 440 | NL/NL | NL. | | Vanadium (V) | FDSSC08401 | 10.5 | NL/6000 | 60.9 | | Zinc (Zn) | FDSSC08401 | 9,0 | NL/12000 | 519 | #### Notes: Background value for non-clay samples. NL = Not listed. NA = Not applicable. μ g/kg = Micrograms per kilogram. mg/kg = Milligrams per kilogram. RBSLs from the South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC, January 5, 1998) and soil-to-groundwater SSLs (DAF=20) from the Soil Screening Guidance: Technical Background Document (USEPA, 1996b) were used as reference concentrations. Bolded concentrations exceed RBSL or the SSL (if no RBSL is available). All background values for Zone G are based on twice the mean of grid sample concentrations. Table 2.4 FDS Groundwater Samples Fuel Distribution System | Well Number | Sample Identifier | Date Sampled | Remarks | |-------------|--------------------------|--------------------|--| | Area 8 | | | | | FDS08A | FDS08A01
FDS08A02 | 1/24/97
6/05/97 | Area 8 associated with FDSSC047 and FDSSC47A;
elevated TPH-GRO/SVOCs | | FDS08B | FDS08B01
FDS08B02 | 1/25/97
6/09/97 | | | FDS08C | FDS08C01*
FDS08C02* | 1/24/97
6/09/97 | *duplicate sample also collected | | FDS08D | FDS08D01 | 3/05/99 | Sampled for metals, VOAs, SVOAs only | | Area 11 | | | | | FDS11A | FDS11A01
FDS11A02 | 1/28/97
6/11/97 | Area 11 associated with FDSSC051; elevated TPH-GRO | | FDS11B | FDS11B01
FDS11B02 | 1/28/97
6/11/97 | | | FD\$11C | FD\$11C01*
FD\$11C02* | 1/28/97
6/11/97 | *duplicate sample also collected | | Area 12 | | | | | FDS12A | FDS12A01*
FDS12A02* | 1/27/97
6/11/97 | Area 12 associated with FDSSC065:
elevated TPH-GRO/inorganics
*fuplicate sample also collected | | FDS12B | FDS11B01
FDS11B02 | 1/27/97
6/11/97 | | | Area 13 | | | | | FDS13A | PD\$13A01
PD\$13A02 | 1/27/97
6/11/97 | Area 13 associated with FDSSC066; elevated TPH-GRO/SVOCs | | FDS13B | FDS13B01
FDS13B02 | 1/27/97
6/13/97 | | | FD\$13C | FDS13C01
FDS13C02 | 1/27/97
6/12/97 | | | FDS13D | FD\$13D01
FD\$13D02 | 1/27/97
6/12/97 | | | FDS13E | FDS13E01
FDS13E02 | 1/28/97
6/13/97 | | #### Table 2.4 FDS Groundwater Samples Fuel Distribution System | Well Number | Sample Identifier | Date Sampled | Remarks | |-------------|------------------------|----------------------------|--| | Area 14 | | | | | FDS14A | FDS14A01
FDS14A02 | 1/27/97
6/12/97 | Area 14 associated with FDSSC067;
elevated TPH-GRO/SVOCs/inorganics | | FDS14B | FDS14B01
FDS14B02 | 1/27/97
6/12/9 7 | | | FDS14C | FD\$14C91
FD\$14C02 | 1/27/97
6/13/97 | | | Area 15 | | | | | FDS15A | FD\$15A01
FD\$15A02 | 1/28/97
6/13/97 | Area 15 associated with FDSSH023; elevated TPH-GRO/inorganics | | FDS15B | FDS15B01
FDS15B02 | 1/28/9 7
6/16/97 | | | FDS15C | FD\$13C01
FD\$15C02 | 1/28/97
6/16/97 | | #### Notes: cyanide. ^{* =} Duplicates; analyzed for Appendix IX parameters (metals, pesticides/PCBs, herbicides, OP pesticides, dioxins, SVOAs, VOAs); cyanide, and hex-chrome, at DQO Level IV. Samples analyzed using SW-846 methods (metals, pesticides/PCBs, SVOAs, VOAs) at DQO Level III. First-round samples also analyzed for | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(μg/L) | Shallow
Background | |------------------------------|------------------|----------------------------|-----------------------------|---------------------------------|-----------------------| | Агеа 8 | | | | | | | Semivolatile Organic Compoun | nds (μg/L) | | | | | | Total PAHs | FDS08B | 46 | 21 | 25/NL | NA | | Acenaphthene | FDS08B | 17 | 6 | 10/220 | NA | | Anthracene | FDS08B | 2 | ND | 10/1100 | NA | | Fluoranthene | FDS08B | 6 | 4 | 10/150 | NA | | Fluorene | FDS08B | 9 | 4 | 10/150 | NA | | 2-Methylnaphthalene | FDS08B | 2 | 2 | 10/150 | NA | | Phenanthrene | FDS08B | 6 | 5 | 10/150 | NA | | Pyrene | FDS08B | 4 | 2 | 10/110 | NA | | Benzoic acid | FDS08B | 2 | 1 | NL/15000 | NA | | Benzyl alcohol | FDS08C | ND | 3 | NL/1100 | NA | | Butylbenzylphthalate | FDS08C | ND | 5 | NL/730 | NA | | Dibenzofuran | FDS08B | 4 | 2 | NL/15 | NA | | Di-n-buty/phthalate | FDS08C | ND | i | NL/370 | NA | | Inorganics (µg/L) | | | | | | | Alteninum (Al) | FDS08A | 8900 | 381 | NL/3700 | 692 | | | FDS08B
FDS08C | 682
ND | 116
72 | | | | Antimony (Sb) | FDS08B | ND | 2.7 | NL/1.5 | 4.85 | | Arsenic (As) | FDS08A | 20.6 | 16.4 | 50/4:5E-02 | 17.8 | | | FDS08B
FDS08C | 6.5
3.4 | 6.6
3.8 | | | | Barium (Ba) | FDS08A | 54.4 | 22.2 | 2000/260 | 31 | | | FDS08B
FDS08C | 179
131 | 89.8
72.6 | | | | | FDS08D | 38.9 | . 2.0 | | | | Beryllium (Be) | FDS08A | 1.3 | ND | NL/1.6E-02 | ND | | | FDS08C | → 0.66 | ND | | | Table 2.5 Analytes Detected in Groundwater Fuel Distribution System | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(μg/L) | Shallow
Background | |-------------------|-------------------------------|------------------------------|-----------------------------|---------------------------------|-----------------------| | Inorganics (μg/L) | | | | | | | Calcium (Ca) | FDS08A
FDS08B
FDS08C | 88100
83800
170000 | 76500
90000
244000 | NI/NL | NL | | Chromium (Cr) | FDS08A
FDS08B | 18.9
4.8 | ND
2.3 | 100/18 | 3.88 | | Cribalt (Co) | FD\$08A
FD\$08B
FD\$08C | 31
35
20 | ND
2.8
9.85 | NL/220 | 1.45 | | Copper (Cu) | FDS08A | 6.4 | 2.3 | NL/13000 | 8.33 | | Iron (Fe) | FDS08A
FDS08B
FDS08C | 15500
3040
828 | 8630
23800
1445 | NL/NL | NL | | Lead (Pb) | FDS08A | 8.4 | ND | 15/15 | 4.6 | | Magnesium (Mg) | FDS08A
FDS08B
FDS08C | 41900
160000
169000 | 37600
157000
127500 | NL/NL | NL | | Manganese (Mn) | FDS08A
FDS08B
FDS08C | 304
386
332 | 275
561
435 | NL/84 | 2906 | | Nickel (Ni) | FDS08A
FDS08B
FDS08C | 8
13
5.8 | 1
1,6
0.88 | NL/73 | 4.08 | | Potassium (K) | FDS08A
FDS08B
FDS08C | 20500
71500
68600 | 20900
63800
51750 | NL/NL | NL | | Silver (Ag) | FDS08C | ND | 1.4 | 5/18 | 1:65 | | Sodium (Na) | FDS08A
FDS08B
FDS08C | 114000
1960000
1210000 | 59000
1850000
598000 | NL/NL | NL | | Thallium (TI) | FDS08A
FDS08B
FDS08C | 4.1
5.8
8.4 | ND
7.8
ND | NL/0-29 | ND | | Vanadium (V) | FDS08A
FDS08B
FDS08C | 22.9
- 13.1
2.8 | 4.5
6.6
18.1 | NL/26 | 15.4 | | Zinc (Zn) | FDC08A | 36 | ND | NL/1100 | 15.6 | | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(µg/L) | Shallow
Background | |--|--------------------------------------|----------------------------|-----------------------------|---------------------------------|-----------------------| | Area 11 | | | | | | | Volatile Organic Compounds (μ | g/L) | | | | | | Chloromethane | 619003 | 8.0 | ND | NL/1.4 | NA . | | Toluene | FDS11C | 1 | ND | 1000/75 | NA | | Semivolatile Organic Compound | ls (μg/L) | , , , | | | | | Total PAHs | FDS11A
619003 | 1
£1 | 2
1 | 25/NL | NA | | Acenaphthene | FDS11A
619003 | 1.0
2.0 | 2.0
ND | 10/220 | NA | | Fluorene | 619003 | 4.0 | ND | 10/150 | NA | | 2-Methylnapthalene | 619003 | 3.0 | ND | 10/150 | NA | | Naphthalene | 619003 | 2.0 | 1.0 | 10/150 | NA | | Phenanthrene | 619003 | 2.0 | ND | 10/150 | NA | | Aniline | FDSHC | 5 | NT | NI/I | NA | | Benzoic Acid | FDS11A
FDS11C | 7
ND | ND
19 | NL/15000 | NA | | Dibenzofuran | 619003 | 2.0 | ND | NL/15 | NA | | 4-Methylphenol (p-Cresol) | FDS11C
619003 | ND
6.0 | 2.0
ND | NL/18 | NA | | Dioxin (pg/L) | | | | | | | Dioxin (2,3,7.8-TCDD TEQs ¹) | FDS11C | 0.1694 | NT | NL/0.45 | NA | | Inorganics (μg/L) | | | | | | | Aluminum (Al) | FDS11A
FDS11B
FDS11C
619003 | 209
174
466
233 | 395
86.2
169
10.3 | NL/3700 | 692 | | Antimony (Sb) | FDS11A
FDS11B
FDS11C
619003 | 5.1
4.2
4.0
- ND | ND
ND
ND
4.9 | NL/1.5 | 4.85 | Table 2.5 Analytes Detected in Groundwater Fuel Distribution System | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(µg/L) | Shallow
Background | |-------------------|------------------|----------------------------|-----------------------------|---------------------------------|-----------------------| | Inorganics (µg/L) | | | | V B ···· | | | Arsenic (As) | FDS11A | 2,9 | ND | 50/4,5E-02 | 17.8 | | | FDS11C
619003 | 3.2
3.0 | 2.9
8.0 | | | | Barium (Ba) | FDS11A | 39.8 | 27.9 | 2000/260 | 31 | | Battuii (Ba) | FDS11B | 68.9 | 54 | 2000/200 | 31 | | | FDS11C | 57.8 | 51.1 | | | | | 619003 | 92.2 | 69.2 | | | | Berylleim (Be) | 619003 | ND | 0.39 | NL/.016 | ND | | Calcium (Ca) | FDS11A | 101000 | 105000 | NL/NL | NL | | | FDS11B | 93200 | 84500 | | | | | FDS11C
619003 | 125500
205000 | 77800
200000 | | | | Chromium (Cr) | FDSHA | 0.96 | ı | 100/18 | 3.88 | | | FDS11B | 0.92 | ND | | | | | FDS11C | 1.1 | ND | | | | | 619003 | 1.0 | 1.5 | | | | Cobalt (Co) | 619003 | ND | 1.4 | NL/220 | 1.45 | | Cyanide (CN) | FDS11B | 3.2 | NT | NL/73 | 3.8 | | | FDSHC | 2.2 | NT | | | | Iron (Fe) | FDS11A | 2260 | 2920 | NL/NL | NL | | | FDS11B
FDS11C | 15800
7690 | 17300
7120 | | | | | 619003 | 32000 | 17000 | | | | Magnesium (Mg) | FDSIIA | 34000 | 28500 | NL/NL | NL | | | FDS11B | 67900 | 54100 | | | | | FDS11C | 191500 | 99650 | | | | | 619003 | 356000 | 497000 | | | | Manganese (Mn) | FDS11A | 300 | 348 | NL/84 | 2,906 | | | FDS11B
FDS11C | 913
527 | 814
500 | | | | | 619003 | 1420 | 702 | | | | Mercury (lig) | FDS11C | ND | 0.11 | 2/1.1 | ND | | Nickel (Ni) | FDS11A | 0.96 | ND | NL/73 | 4.08 | | | FDS11B | 3 | ND | | | | | FDS11C
619003 | 1
ND | ND
1.5 | | | | Table 2.5 | |----------------------------------| | Analytes Detected in Groundwater | | Fuel Distribution System | | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(μg/L) | Shallow
Background | |------------------------------|--|---|---|---------------------------------|-----------------------| | Inorganics (μg/L) | | | | | | | Potassium (K) | FDS11A
FDS11B
FDS11C
619003 | 27300
38200
54050
163000 | 18300
31200
39650
158000 | NL/NL | NL: | | Sodium (Na) | FDS11A
FDS11B
FDS11C
619003 | 380000
587000
908000
3840000 | 185000
433000
1030000
4600000 | NL/NL | NL. | | Thallium (TI) | 619003 | 6.6 | ND | NL/0.29 | ND | | Tin (Sn) | FDS11C | 3.3 | ND | NL/2200 | ND | | Vanadium (V) |
FDS11A
FDS11B
FDS11C
619003 | 0.67
ND
0.67
ND | ND
ND
ND
7.5 | NL/26 | 15.4 | | Areas 12, 13, & 14 | | | | | | | Semivolatile Organic Compour | nds (μg/L) | | | | | | Total PAHs | FDS13A | ı | 5 | 25/NL | NA | | 2-Methylnaphthalene | FDS13A | 1 | 5 | 10/150 | NA | | 4-Nitrophenol | FDS14A | ND | 1 | NL/230 | NA | | Benzoic acid | FDS13A
FDS13B
FDS14A
FDS14B | 2
2
ND
ND | ND
ND
2
1 | NL/15000 | NA | | Inorganics (μg/L) | | | | | | | Alominum (Al) | FDS12A
FDS12B
FDS13A
FDS13B
FDS13C
FDS13D
FDS13E
FDS14A
FDS14B
FDS14C
GDG002 | 514
ND
1360
787
1730
1850
215
ND
ND
738
176 | 288
213
692
74.4
1600
2820
1290
2949
201
250
ND | NL/3700 | 692 | | Antimony (Sb) | FDS13E
GDG002 | - 3.4
ND | ND
3.8 | NL/1.5 | 4.85 | Table 2.5 Analytes Detected in Groundwater Fuel Distribution System | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(μg/L) | Shallow
Background | |--|-----------------|----------------------------|-----------------------------|---|--| | Inorganics (µg/L) | " :" | | | | ÷ | | Arsenic (As) | FDS12A | 6.55 | 22.95 | 50/0:045 | 17.8 | | | FDS128 | 28 | 49.3 | | | | | FDS13A | 27 | 210 | | | | | FDS13B | 5.2 | 16.8 | | | | | FDS13C | 3,9 | 6 | | | | | FDSI3D | ND | 16.7 | | | | | FDS13E | 22.5 | 29.9 | | | | | FDSI4A | 50.3 | 21.8 | | | | | FDS14B | 6.9 | 22.5 | | | | | FDS14C | 14 | 24.9 | | | | | GDG002 | 7.8 | 10 | | | | Barium (Ba) | FDS12A | 268 | 196.5 | 2000/260 | 31 | | | FDS12B | 78.9 | 70.4 | | | | | FDS13A | 138 | 28.1 | | | | | FDS13B | 144 | 29.8 | | | | | FDS13C | 27.3 | 17 | | | | | FDS13D | 35.6 | 31.9 | | | | | FDS13E | 32.9 | 30.4 | | | | | FDS14A | 45.2 | 59.6 | | | | | FDS14B | 52 | 46.2 | | | | | FDS14C | 51.5 | 33.1 | | | | 99899990000000000000000000000000000000 | GDG002 | 13.6 | 17.4 | Managara (managara (m | tánicántánach na | | Beryllium (Be) | FDS13B | .45 | ND | NL/0.016 | ND | | | FDS13C | .53 | ND | | | | | FDS14C | .64 | ND | | | | Cadmium (Cd) | FD\$12A | ND | .46 | 5/1.8 | 0.53 | | , f | FDS12B | ND | .52 | | | | | FDS13A | ND | .44 | | | | | FDS13C | ND | .68 | | | | | FDS14A | ND | .31 | | | | | FDS14B | ND | .41 | | | | | GDG002 | ND | .4 | | | | Calcium (Ca) | FDS12A | 274500 | 215500 | NL/NL | NL | | | FDS12B | 172000 | 160000 | | | | | FDS13A | 161000 | 155000 | | | | | FDS13B | 197000 | 185000 | | | | | FDS13C | 69800 | 49400 | | | | | FDS13D | 8930 | 3580 | | | | | FDS13E | 155000 | 161000 | | | | | FDS14A | 177000 | 137000 | | | | | FDS14B | 127000 | 137000 | | | | | FDS14C | 201000 | 151000 | | | | | GDG002 | 91400 | 90700 | | | Table 2.5 Analytes Detected in Groundwater Fuel Distribution System | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(µg/L) | Shallow
Background | |-------------------|---|--|--|--|-----------------------| | Inorganics (µg/L) | | | ""- | | | | Chromum (Cr) | FDS12A | 1.2 | ND | 100/18 | 3.88 | | | FDS12B | .82 | ND | | | | | FDS13A | 4.2 | 1.9 | | | | | FDS13B | 2,6 | 1.9 | | | | | FDS13C | 1.3 | 2.9 | | | | | FDS13D | 3,6 | 5,3 | | | | | FDS13E | ND | 3,3 | | | | | FDS14A | 2 | 9.6 | | | | | FDS14B | 4,3 | 2.8 | | | | | FDS14C | 1.4 | 2,4 | | | | Cobalt (Co) | FDS12A | 17.85 | 18.7 | NL/220 | 1.45 | | | FDS12B | 31 | 29.6 | | | | | FDS13A | 4.1 | ND | | | | | FDS13B | 3.1 | 1.9 | | | | | FDS13C
FDS13D | 29
3.4 | 23.4
1.4 | | | | | FDS14A | 3.4
1.9 | | | | | | FDS14A
FDS14B | 3 | 2.1
1.6 | | | | | FDS14B
FDS14C | 1.6 | .98 | | | | | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | E-14 12 14 14 14 14 14 14 14 14 14 14 14 14 14 | | | Copper (Cu) | FDS13A | 5.2 | ND | NŁ/13000 | 8.33 | | | FDS13B | ND
ND | 2.2 | | | | | FDS13D
FDS14A | ND
ND | 1.8
3.7 | | | | | FDS14B | 3.8 | ND | | | | | FDS14C | | ND | | | | Cyanida (CN) | FDS13E | 2.6 | NT | NL/73 | 3.8 | | Cyanide (CN) | FDS14B | 2.0 | NT | NL//3 | 3.6 | | | FDS14C | 8.4 | NT | | | | Iron (Fe) | v o co | (daggagagagagagagagagagagagagagagagagaga | | NL/NL | \$1 # | | Hon (re) | FDS12A | 10800 | 19850 | NL/NL | NL | | | FDS12B
FDS13A | 18500
14700 | 32200
37200 | | | | | FDS13B | 2110 | 9150 | | | | | FDSI3C | 73800 | 64500 | | | | | FDS13D | 4640 | 8280 | | | | | FDS13E | 10700 | 19000 | | | | | FDS14A | 20100 | 15600 | | | | | FDS14B | 4240 | 25600 | | | | | FDS14C | 2830 | 4930 | | | | | GDG002 | 28200 | 35700 | | | | Lead (Pb) | FDS13A | ND | 1 | 15/15 | 4.6 | | | FDS13D | ND | 1.9 | | | | | FDS13E | ND | 1.3 | | | | | FDS14A | ND | 3.5 | | | Table 2.5 Analytes Detected in Groundwater Fuel Distribution System | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
$(\mu { m g/L})$ | Shallow
Background | |-------------------|------------------|----------------------------|-----------------------------|---|-----------------------| | Inorganics (µg/L) | | | | | | | Magnesium (Mg) | FDS12A | 58000 | 53400 | NL/NL | NL | | | FDS12B | 106000 | 112000 | | | | | FDS13A | 203000 | 75700 | | | | | FDS13B | 428000 | 214000 | | | | | FDS13C | 153000 | 113000 | | | | | FDS13D | 6130 | 2730 | | | | | FDS13E | 131000 | 137000 | | | | | FDS14A | 257000 | 281000 | | | | | FDS14B | 266000 | 217000 | | | | | FDS14C
GDG002 | 170000
100000 | 197000
81000 | | | | Manganese (Mn) | FDS12A | 3650 | 3180 | NL/84 | 2906 | | | FDS12B | 3370 | 3240 | | | | | FDS13A | 1370 | 2480 | | | | | FDS13B | 286 | 292 | | | | | FDS13C | 1680 | 1300 | | | | | FDS13D | 163 | 73.7 | | | | | FDS13E | 1540 | 1660 | | | | | FDS14A | 607 | 354 | | | | | FDS14B | 329 | 405 | | | | | FDS14C | 3360 | 1510 | | | | | GDG002 | 2630 | 2820 | | | | Nickel (Ni) | FDS12A | 9.2 | 4.85 | NL/73 | 4 08 | | | FDS12B | 9.6 | 6.2 | | | | | FDS13A | 11 | ND | | | | | FDS13B | 7.7 | 4 | | | | | FDS13C | 10.5 | 7.9 | | | | | FDS13D | 4.8 | 2.2 | | | | | FDS13E | 94 | .82 | | | | | FDS14A | ND
 | 4.8 | | | | | FDS14B | 7.7 | 14 | | | | | FDS14C | ND | 2.3 | | | | | GDG002 | 2 | ND | | | | Potassium (K) | FDS12A | 7140 | 5935 | NL/NL | NL | | | FDS12B | 41200 | 43900 | × . | | | | FDS13A | 75200 | 42100 | | | | | FDS13B | 123000 | 86500 | | | | | FDS13C | 40300 | 30300 | | | | | FDS13D | 3610
57400 | 2910
67000 | | | | | FDS13E | 57400
91500 | 67000 | | | | | FDS14A
FDS14B | 91500
90000 | 109000
81600 | | | | | FDS14B
FDS14C | 63100 | 94300 | | | | | GDG002 | 46400 | 49800 | | | | | GDGWZ | 70700 | | | | | Selenium (Se) | GDG002 | ND | 4,] | 50/18 | 4,3 | | Silver (Ag) | GDG002 | ~ 1.7 | ND | 5/18 | 1.65 | Table 2.5 Analytes Detected in Groundwater Fuel Distribution System | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(µg/L) | Shallow
Background | |--------------------------------|--|----------------------------|-----------------------------|---------------------------------|-----------------------| | Inorganics (µg/L) | | | | 797 | | | Sodium (Na) | FDS12A | 427000 | 388000 | NL/NL | NL | | | FDS12B | 876000 | 1010000 | | | | | FDS13A | 1850000 | 425000 | | | | | FDS13B
FDS13C | 3860000
1620000 | 2080000
1260000 | | | | | FDS13D | 163000 | 104000 | | | | | FDS13E | 538000 | 795000 | | | | | FDS14A | 1970000 | 2510000 | | | | | FDS14B | 2240000 | 2020000 | | | | | FDS14C | 1030000 |
1750000 | | | | | GDG002 | 694000 | 576000 | | | | Thallium (Tl) | FDS12A | 4.5 | ND | NL/0.29 | ND | | | FDS12B | 3.2 | ND | | | | | FDS13A | 5.7 | ND | | | | | FDS13B | 7.1 | ND
ND | | | | | FDS13D
FDS14A | 4.2
3.5 | ND
ND | | | | | FDS14A
FDS14B | 3.2 | ND | | | | | FDS14C | 5.3 | ND | | | | Vanadium (V) | FDS12A | 1.35 | ND | NL/26 | 15.4 | | + axiaoratti (+) | FDS13A | 4.7 | 5.1 | | | | | FDS13B | 9.1 | 20.5 | | | | | FDS13C | 1.6 | 29 | | | | | FDS13D | 3.7 | 6.1 | | | | | FDS13E | 3.7 | 5.3 | | | | | FDS14A | 5 | 20.2 | | | | | FDS14B | 8.4 | 13.2 | | | | | FDS14C
GDG002 | 54
27 | 17.3
3.1 | | | | T' /T-) | Annual Contract of the Contrac | | | NT /1100 | 16.6 | | Zinc (Zn) | FDS12A
FDS12B | ND
ND | 8.4
16.3 | NL/1100 | 15.6 | | | FDS12B
FDS13A | ND | 7.8 | | | | | FDS13A | ND | 21.7 | | | | | FDS13D | ND | 12.9 | | | | | FDS14A | ND | 10.4 | S. | | | Area 15 | | | | | | | Volatile Organic Compounds (µg | :/L) | | | | | | Toluene | FDS15A | 3 | ND | 1000/75 | NA | | Chlorobenzene | FDS15A | 6 | ND | NL/3.9 | NA | | Semivolatile Organic Compounds | s (μg/L) | | | | | | Phenol | | | | | | | | FDSI5A | . I | ND | NL/2200 | NA | | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(μg/L) | Shallow
Background | |------------------------------|----------------------------|----------------------------|-----------------------------|---------------------------------|-----------------------| | Semivolatile Organic Compoun | ds (μg/L) | | | <u> </u> | | | Benzoic acid | FDS15A | 6 | ND | NE/15000 | NA NA | | Pesticides/PCBs (μg/L) | | | | | | | beta-BHC | FDS15A | 0.057 | ND | NL/0.037 | NA | | Inorganics (μg/L) | | | | | | | Aluminum (Al) | FDS15A
FDS15B
FDS15C | 100
3.010
962 | 503
209
474 | NL/3700 | 692 | | Antimony (Sb) | FDS15C | 3.5 | ND | NL/1.5 | 4.85 | | Arsenic (As) | FDS15A
FDS15B | 19.4
4.1 | 26.7
4.6 | 50/0.045 | 17.8 | | Barium (Ba) | FDS15A
FDS15B
FDS15C | 55.2
68.6
159 | 94.5
70.6
153 | 2000/260 | 31 | | Calcium (Ca) | FDS15A
FDS15B
FDS15C | 126000
98800
268000 | 235000
119000
284000 | NL/NL | NI. | | Chromium (Cr) | FDS15A
FDS15B
FDS15C | 0.92
4.7
1.9 | 1.5
ND
ND | 100/18 | 3.88 | | Cobalt (Co) | FDS15B
FDS15C | 81
13 | 6.8
ND | NL/220 | 1,45 | | Copper (Cu) | FD\$15A | 3.6 | ND | NL/13000 | 8.33 | | Cyanide (CN) | FDS15A
FDS15B | 3
7 | NT
NT | NL/73 | 3.8 | | Iron (Fe) | FDS15A
FDS15B
FDS15C | 4920
2060
1920 | 6620
675
3040 | NL/NL | NL | | Magnesium (Mg) | FDS15A
FDS15B
FDS15C | 12200
26200
19300 | 15800
22800
14000 | NL/NL | NL | | Manganese (Mn) | FDS15A
FDS15B
FDS15C | 721
1050
- 806 | 515
813
465 | NL/84 | 2906 | | Parameters | Location | First
Sampling
Event | Second
Sampling
Event | RBSL/Tap Water
RBC
(μg/L) | Shallow
Background | |-------------------|----------------------------|----------------------------|-----------------------------|---------------------------------|-----------------------| | Inorganics (µg/L) | | | | | | | Nickel (Ns) | FDS15A
FDS15B
FDS15C | 3,7
3,2
1,7 | 0.84
1.6
0.9 | NL/73 | 4.08 | | Potassium (K) | FDS15A
FDS15B
FDS15C | 10800
7410
3440 | 5130
8050
3450 | NL/NL | NL | | Sodium (Na) | FDS15A
FDS15B
FDS15C | 78300
92400
117000 | 157000
158000
114000 | NL/NL | NL | | Thallium (Tl) | FDS15C | 3.3 | ND | NL/0.29 | ND | | Vanadiom (V) | FDS15A
FDS15B
FDS15C | 1.3
6
1.9 | 1.6
1.1
1.6 | NL/26 | 15.4 | #### Notes: NL = Not listed. NA = Not applicable. ND = Not detected. NT = Not taken. μ g/L = Micrograms per liter. pg/L = Picograms per liter. Calculated from methods described in USEPA Interim Supplemental Guidance to RAGS: Human Health Risk Assessment, Bulletin 2 (USEPA, 1995). RBSLs from the South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC, January 5, 1998) and tap water RBCs (THQ=0.1) from Risk Based Concentration Table (USEPA, October 22, 1997) were used as reference concentrations. Bolded concentration exceed RBSL or the Tap Water RBC (if no RBSL is available). All background values for Zone G are based on twice the means of the grid sample concentrations. Background values for groundwater are based on two sampling rounds in two wells at each depth. ## Table 2.6 Areas 19 and 20 DPT Soil and Groundwater Samples and Analyses Fuel Distribution System | Sample Location | Sample Identifier | Medium | Date Collected | Analyses | |------------------|--------------------------|-----------------------|--------------------|-------------| | Area 19 | | | | | | P001 | F19SP00106
F19GP00101 | Soil
Groundwater | 1/21/99
4/12/99 | VOCs, SVOCs | | P002 | F19SP00205
F19GP00201 | Soil
Groundwater | 1/21/99
4/12/99 | VOCs, SVOCs | | P003 | F19SP00305
F19GP00301 | Soil
Groundwater | 1/21/99
4/12/99 | VOCs; SVOCs | | P004 | F19SP00406
F19GP00401 | Soil
Groundwater | 1/22/99
4/12/99 | VOCs, SVOCs | | P005 | F19SP00505
F19GP00501 | Seil
Groundwater | 1/21/99
4/12/99 | VOCs, SVOCs | | P006 | F19SP00604 | Soil | 1/21/99 | VOCs, SVOCs | | P007 | F19SP00706 | Soil | 1/21/99 | VOCs, SVOCs | | P009 | F19SP00909
F19GP00901 | Soil
Groundwater | 5/07/99
5/10/99 | VOCs, SVOCs | | P0 10 | F19SP01005
F19GP01001 | Soil
Groundwater | 5/07/99
5/10/99 | VOCs, SVOCs | | P01 t | F19SP01105
F19GP01101 | Soil
Groundwater | 5/07/99
5/10/99 | VOCs, SVOCs | | P012 | F19SP01205
F19GP01201 | Soil
Groundwater | 5/07/99
5/10/99 | VOCs, SVOCs | | P013 | F19SP01311
F19GP01301 | Soil
Groundwater | 6/23/99
6/24/99 | VOCs, SVOCs | | P014 | F19SP01407
F19GP01401 | Soil
Groundwater | 6/23/99
6/24/99 | VOCs, SVOCs | | P015 | F19SP01507
F19GP01501 | Soil
Groundwater | 6/23/99
6/28/99 | VOCs, SVOCs | | P016 | F19SP01611
F19GP01601 | Soil
Groundwater | 6/23/99
6/28/99 | VOCs, SVOCs | | P017 | F19SP01711
F19GP01701 | Soil
Groundwater | 6/23/99
6/28/99 | VOCs, SVOCs | | P018 | F19SP01811
F19GP01801 | Soil
Groundwater | 6/23/99
6/28/99 | VOCs, SVOCs | | P019 | F19SP01912
F19GP01901 | - Soil
Groundwater | 6/23/99
6/28/99 | VOCs, SVOCs | Hobson Fuel Farm Site Assessment Report Charleston Naval Complex Revision: 0 November 2000 ## Table 2.6 Areas 19 and 20 DPT Soil and Groundwater Samples and Analyses Fuel Distribution System | Sample Location | Sample Identifier | Medium | Date Collected | Analyses | |-----------------|---------------------------------------|---------------------|--------------------|------------------------------------| | P020 | F19SP02010
F19GP02001 | Soil
Groundwater | 6/23/99
6/28/99 | VOCs, 5VOCs | | P021 | F19SP02103 _*
F19CP02101 | Soil
" | 10/02/00 | VOCs, SVOCs | | P022 | F19SP02203 | Soil | 10/02/00 | VOCs, SVOCs | | P023 | F19SP02303 | Soil | 10/02/00 | VOCs, SVOCs | | P624 | F19SP02403 | Soil | 11/15/00 | VOCs, SVOCs | | P025 | F19SP02503 | Soil | 11/15/00 | VOCs, SVOCs | | Area 20 | | | | | | P001 | F20SP00111
F20GP00101 | Soit
Groundwater | 1/22/99
1/29/99 | VOCs, SVOCs
VOCs, SVOCs, Metals | | P002 | F20SP00206
F20GP00201 | Soil
Groundwater | 1/22/99
1/29/99 | VOCs, SVOCs
VOCs, SVOCs, Metals | | P003 | F20SP00308
F20GP00301 | Soil
Groundwater | 1/22/99
1/29/99 | VOCs, SVOCs
VOCs, SVOCs, Metals | | P004 | F20SP00403
F20GP00401 | Soil
Groundwater | 1/29/99
1/29/99 | VOCs, SVOCs
VOCs, SVOCs, Metals | | P005 | F20SP00511
F20GP00501 | Soit
Groundwater | 1/26/99
1/29/99 | VOCs, SVOCs
VOCs, SVOCs, Metals | | P006 | F20SP00606
F20GP00601 | Soil
Groundwater | 1/27/99
1/29/99 | VOCs, SVOCs
VOCs, SVOCs, Metals | | P007 | F20SP00719 | Soil | 1/26/99 | VOCs, SVOCs | | P008 | F20GP00801 | Groundwater | 1/29/99 | VOCs, SVOCs, Metals | | P009 | F20SP00921 | Seil | 1/27/99 | VOCs, SVOCs | | P010 | F20SP01002 | Soil | 1/27/99 | VOCs, SVOCs | | P012 | F20SP0£210 | Seil | 1/27/99 | VOCs, SVOCs | | P013 | F20SP01309 | Soil | 1/27/99 | VOCs, SVOCs | | P014 | F20SP01404 | Soil | 1/28/99 | VOCs, SVOCs | | P015 | F20SP01509 | • Soil | 1/28/99 | VOCs, SVOCs | | P016 | F20SP01609 | Soil | 1/28/99 | VOCs, SVOCs | ## Table 2.6 Areas 19 and 20 DPT Soil and Groundwater Samples and Analyses Fuel Distribution System | Sample Location | Sample Identifier | Medium | Date Collected | Analyses | |-----------------|--------------------------|-----------------------|---------------------|------------------| | P017 | F20SP01709 | Soil | 1/27/99 | VOCs, SVOCs | | P018 | F20GP01801 | Groundwater | 5/07/99 | VOCs, SVOCs | | P019 | F20SP01906
F20GP01901 | Soil
Groundwater | 5/07/99
5/07/99 | VOCs, SVOCs | | P020 | F20SP02006
F20GP02001 | Soil
Groundwater | 5/07/99
5/07/99 | VOCs, SVOCs | | P021 | F20SP02106 | Soil | 5/07/99 | VOCs, SVOCs | | P022 | F20SP02204
F20GP02201 | Soil
Groundwater | 5/07/99
5/10/99 | VOCs, SVOCs | | P023 | F20SP02307 | Soil | 5/07/99 | VOCs, SVOCs | | P024 | F20SP02407
F20GP02401 | Soil
Groundwater | 5/07/99
5/10/99 | VOCs, SVOCs | | P025 | F20SP0Z505
F20GP0Z501 | Soil
Groundwater | 5/07/99
5/10/99 | VOCs, SVOCs | | P026 | F20SP02608
F20GP02601 | Soil
Groundwater | 5/07/99
5/10/99 | VOCs, SVOCs | | P027 | F20SP02708
F20GP02701 | Soil
Groundwater | 5/07/99
5/11/99 | VOCs, SVOCs | | P028 | F20GP02801 | Groundwater | 5/11/99 | VOCs | | P029 | F20SP02907
F20GP02901 | Soil
Groundwater | 5/07/99
5/11/99 | VOCs, SVOCs | | P030 | F20SP03005
F20GP03001 | Soil
Groundwater | 5/07/99
5/11/99 | VOCs, SVOCs | | P031 | F20GP03101 | Groundwater | 6/24/99 | VOCs, SVOCs | | P032 | F20GP03201 | Groundwater | 6/24/99 | VOCs, SVOCs | | P033 | F20GP03301 | Groundwater | 6/24/99 | VOC ₆ | | P034 | F20GP03401 | Soil | 10/02/00 | VOCs, SVOCs | | P035 |
F20SP03501
F20CP03501 | Soil
* | 10/02/00 | VOCs, SVOCs | | P036 | F20SP03603
F20GP03601 | Soil
Groundwater | 9/29/00
10/03/00 | VOCs, SVOCs | | P037 | F20SP03703
F20GP03701 | - Soil
Groundwater | 9/29/00
10/03/00 | VOCs, SVOCs | ### Table 2.6 Areas 19 and 20 DPT Soil and Groundwater Samples and Analyses Fuel Distribution System | Sample Location | Sample Identifier | Medium | Date Collected | Analyses | |-----------------|---------------------------------------|---------------------|---------------------|-------------| | P038 | F20SP03803 | Soil | 10/03/00 | VOCs, SVOCs | | P039 | F20SP03903 | Soil | 10/03/00 | VOCs, SVOCs | | P040 | F20SP04003
F20GP04001 | Soil
Groundwater | 9/29/00
10/02/00 | VOCs, SVOCs | | P041 | F20SP04103 | Soil | 9/29/00 | VOCs, SVOCs | | | F20GP04101 _*
F20HP04101 | Groundwater | 10/02/00 | | | P042 | F20SP04203 | Soil | 9/29/00 | VOCs, SVOCs | | P043 | F20GP04301 | Groundwater | 10/03/00 | VOCs, SVOCs | | P044 | F20GP04401 | Groundwater | 10/02/00 | VOCs, SVOCs | | P045 | F20GP04501 | Groundwater | 10/03/00 | VOCs, SVOCs | ### Notes: Area 19 sample P008 was not collected. Area 20 sample P011 was not collected. SVOCs = Semivolatile Organic Compounds. VOCs = Volatile Organic Compounds. 1.4 = Duplicate sample. | New York Note Not | NA Yes Yes Yes No No No No No No No No | |--|---| | Actione Fi9SP023 50 NL Fi9SP024 9.5 Benzene Fi9SP006 8 5 Fi9SP012 18 5 Fi9SP013 26 Chloroform Fi9SP025 1J NL Ethylbenzene Fi9SP006 83 1,260 Fi9SP012 7,700 Fi9SP013 38 719SP014 2 7500 Fi9SP014 2 7500 Fi9SP014 3 4 6,800 Fi9SP014 6,800 Fi9SP014 6,800 Fi9SP014 6,800 Fi9SP014 6,800 Fi9SP015 7,100 Fi9SP016 1,080 Fi9SP016 1,080 Fi9SP016 1,080 Fi9SP016 1,080 Fi9SP016 1,080 Fi9SP016 1,080 | Yes Yes Yes NA No Yes No No No No No | | FigsP024 9.5 | Yes Yes Yes NA No Yes No No No No No | | F19SP012 18 F19SP013 26 | Yes Yes NA No Yes No No No No No | | F19SP012 18 F19SP013 26 | Yes Yes NA No Yes No No No No No | | F19SP012 18 F19SP013 26 | Yes NA No Yes No No No No No | | Chloroform F198P025 1J NL Ethylbenzene F198P006 83 1,260 F198P012 7,700 F198P013 38 F198P014 2 F198P015 300 Xylene (Total) F198P006 12 42,471 F198P012 780 F198P014 3 F198P020 1 Semivolatile Organic Compounds (µg/kg) Total Naphthalenes F198P001 450 210 F198P012 159,855 F198P012 159,855 F198P013 93,000 F198P014 6,000 F198P015 7,100 F198P015 7,100 F198P015 7,100 F198P016 1,080 F198P016 1,080 F198P020 10,300 | NA No Yes No No No No No No | | Ethylbenzene F19SP006 83 1,260 F19SP012 7,700 F19SP013 38 F19SP014 2 F19SP015 300 Xylene (Total) F19SP006 12 42,471 F19SP012 780 F19SP014 3 F19SP014 3 F19SP020 1 Semivolatile Organic Compounds (μg/kg) Total Naphthalenes F19SP001 450 210 F19SP012 159,855 F19SP013 93,000 F19SP014 6,800 F19SP014 6,800 F19SP014 6,800 F19SP015 7,100 F19SP016 1,080 F19SP016 1,080 F19SP016 1,080 F19SP020 10,300 | No
Yes
No
No
No
No
No
No | | F19SP012 7,700 F19SP013 38 F19SP014 2 F19SP015 300 Xylene (Total) F19SP006 12 42,471 F19SP012 780 F19SP014 3 F19SP020 1 Semivolatile Organic Compounds (µg/kg) Total Naphitialenes F19SP001 450 210 F19SP012 159,855 F19SP012 159,855 F19SP013 93,000 F19SP014 6,800 F19SP014 6,800 F19SP015 7,100 F19SP015 7,100 F19SP016 1,080 F19SP020 10,300 | Yes
No
No
No
No
No
No | | F19SP012 7,700 F19SP013 38 F19SP014 2 F19SP015 300 Xylene (Total) F19SP006 12 42,471 F19SP012 780 F19SP014 3 F19SP020 1 Semivolatile Organic Compounds (µg/kg) Total Naphitialenes F19SP001 450 210 F19SP012 159,855 F19SP012 159,855 F19SP013 93,000 F19SP014 6,800 F19SP014 6,800 F19SP015 7,100 F19SP015 7,100 F19SP016 1,080 F19SP020 10,300 | Yes
No
No
No
No
No
No | | F19SP014 2 F19SP015 300 Xylene (Total) F19SP006 12 42.471 F19SP012 780 F19SP014 3 F19SP020 1 Semivolatile Organic Compounds (μg/kg) Total Naphthalenes F19SP001 450 210 F19SP012 159.855 F19SP012 159.855 F19SP013 93,000 F19SP014 6,800 F19SP015 7,100 F19SP015 7,100 F19SP016 1,080 F19SP020 16,300 | No
No
Na
Na
No | | F19SP015 300 Xylene (Total) F19SP006 12 42,471 F19SP012 780 F19SP014 3 F19SP020 1 Semivolatile Organic Compounds (μg/kg) Total Naphithalenes F19SP001 450 210 F19SP012 159,855 F19SP012 159,855 F19SP013 93,000 F19SP014 6,800 F19SP014 6,800 F19SP015 7,100 F19SP016 1,080 F19SP020 16,300 | No
No
No
No | | Xylene (Total) F19SP016 F19SP014 F19SP020 F19SP020 F19SP020 F19SP030 | Na
Na
No | | F19SP012 780 F19SP014 3 F19SP020 1 Semivolatile Organic Compounds (μg/kg) Total Naphthalenes F19SP001 450 210 F19SP016 3,000 F19SP012 159,855 F19SP013 93,000 F19SP014 6,800 F19SP014 6,800 F19SP015 7,100 F19SP016 1,080 F19SP020 10,300 | No
No | | F19SP012 780 F19SP014 3 F19SP020 1 Semivolatile Organic Compounds (μg/kg) Total Naphithalenes F19SP001 450 210 F19SP016 3,000 F19SP012 159,855 F19SP013 93,000 F19SP014 6,800 F19SP014 6,800 F19SP015 7,100 F19SP016 1,080 F19SP020 10,300 | No
No | | F19SP020 1 Semivolatile Organic Compounds (μg/kg) Total Naphthalenes F19SP001 450 210 F19SP006 3,000 F19SP012 159,855 F19SP013 93,000 F19SP014 6,800 F19SP015 7,100 F19SP016 1,080 F19SP020 10,300 | | | Semivolatile Organic Compounds (μg/kg) | No | | Total Naphidialenes F19SP001 450 210 F19SP006 3,000 F19SP012 159,855 F19SP013 93,000 F19SP014 6,800 F19SP015 7,100 F19SP016 1,080 F19SP020 10,300 | | | F19SP006 3,000 F19SP012 159,855 F19SP013 93,000 F19SP014 6,800 F19SP015 7,100 F19SP016 1,080 F19SP020 10,300 | | | F19SP006 3,000 F19SP012 159,855 F19SP013 93,000 F19SP014 6,800 F19SP015 7,100 F19SP016 1,080 F19SP020 10,300 | Yes | | F19SP013 93,000 F19SP014 6,800 F19SP015 7,100 F19SP016 1,080 F19SP020 10,300 | Yes | | F19SP014 6,800
F19SP015 7,100
F19SP016 1,080
F19SP020 10,300 | Yes | | F19SP015 7,100
F19SP016 1,080
F19SP020 10,300 | Yes | | F19SP016 1,080
F19SP020 10,300 | Yes
Yes | | F19SP020 10,300 | Yes | | F19SP023 2,900 | Yes | | | Yes | | 2-Methylnaphthalene F19SP012 112,855 NL | NA | | F19SP013 75,000 | | | F19SP014 6,800 | | | F19SP015 5,700
F19SP016 920 | | | F19SP020 1,200 | | | F19SP023 2,900 | | | Naphthalene P198P0Q1 450 210 | Yes | | F19SP006 3,000 | Yes | | F19SP012 47,000 | Yes | | F19SP013 18,000 | Yes | | F19SP015 1,400 | Yes | | F19SP016 . 160
F19SP020 9,100 | No
Yes | | Parameters | Location | Subsurface
Conc. | Groundwater
Protection RBSL | Exceeds Groundwater
Protection RBSL | |------------------------------|------------|---------------------|--------------------------------|---| | Semivolatile Organic Compoun | ds (μg/kg) | | | | | Benzo(a)anthracene | F19SP001 | 140 | 73,084 | No | | | F19SP004 | 6,300 | | No | | | F19SP006 | 1,900 | | No | | | F19SP009 | 75 | | No | | | F19SP010 | 56 | | No | | | F19SP012 | 570 | | No | | | F19SP013 | 600 | | No | | | F19SP014 | 2,100 | | No | | | F19SP023 | 83 | | No | | | F19SP024 | 205 | | | | Benzo(b)fluoranthene | F19SP001 | 110 | 29,097 | No | | | F19SP004 | 5,500 | | No | | | F19SP006 | 1,800 | | No | | | F19SP009 | 62 | | No | | | F19SP010 | 58 | | No | | | F19SP012 | 390 | | No | | | F19SP014 | 2,500 | | No | | | F19SP024 | 200Ј | | *************************************** | | Benzo(k)fluoranthene | F19SP001 | 120 | 231,109 | No | | | F19SP004 | 5,600 | | No | | | F19SP006 | 2,000 | | No | | | F19SP009 | 54 | | No | | | F19SP010 | 66 | | No | | | F19SP014 | 2,400 | | No | | Chrysene | F19SP001 | 240 | 12,998 | No | | | F19SP004 | 6,300 | | No | | | F19SP006 | 3,200 | | No | | | F19SP009 | 120 | | No | | | F19SP010 | 71 | | No | | | F19SP012 | 1,200 | | No | | | F19SP013 | 1,100 | | No | | | F19SP014 | 3,000 | | No | | | F19SP023 | 76 | | No | | | F19SP024 | 220 | | | | Acenaphthene | F19SP020 | 1,900 | NL. | NA | | | F19SP023 | 240 | | | | | F19SP024 | 140 | | | | Anthracene | F19SP014 | 910 | NL | NA | | | F19SP023 | 100 | | | | | F19SP024 | 72 | | | | Вепло(а)ругене | F19SP014 | 2,400 | NL | NA | | vering
(with text) | F19SP023 | - 52 | 1417 | 1111 | | | F19SP024 | 160 | | | | Parameters | Location | Subsurface
Conc. | Groundwater
Protection RBSL | Exceeds Groundwater Protection RBSL | |-------------------------------|--|---|--------------------------------|-------------------------------------| | Semivolatile Organic Compound | ls (μg/kg) | | | | | Benzo(g,h,i)perylene | F19SP014 | 940 | NL | NA | | Dibenzofuran | F19SP020
F19SP023 | 790
240 | NL | NA | | Fluoranthene | F19SP014
F19SP020
F19SP023
F19SP024 | 4,900
160
300
370 | NL | NA | | Fluorene | F19SP013
F19SP014
F19SP015
F19SP016
F19SP020
F19SP023 | 7,100
1,600
720
150
880
540 | NL | NA | | Indeno(1,2,3-cd)pyrene | F19SP014 | 1,000 | NL | NA | | Phenanthrene | F19SP013
· F19SP014
F19SP015
F19SP020
F19SP023
F19SP024 | 14,000
5,700
1,200
1,300
710
115 | NL | NA | | Pyrene | F19SP014
F19SP020
F19SP023
F19SP024 | 5,900
100
210
590 | NL | NA. | | bis(2-ethylhexyl)phthalate | F19SP015
F19SP016 | 25
23 | NL | NA | | Area 20 | | | | | | Volatile Organic Compounds (µ | g/kg) | | **** | · | | Acetone | F20SP035
F20SP037
F20SP038
F20SP039
F20SP040
F20SP042 | 82.5
120
30
48
180
110 | NL | NA. | | Benzene | F20SP014
F20SP023 | 38
3 | 5 | Yes
No | | Parameters | Location | Subsurface
Conc. | Groundwater
Protection RBSL | Exceeds Groundwater
Protection RBSL | |-------------------------------|--|--|--------------------------------|--| | Volatile Organic Compounds (µ | (g/kg) | 11 7 7 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | Ethyfbenzene | F20SP014
F20SP024
F20SP041 | 11
1
1 | 1,260 | Na
Na
Na | | Methylene chloride | F20SP038 | 3 | NL | NA | | Toluene | F20SP014
F20SP021
F20SP030 | 1
2
2 | 1,622 | No
No
No | | Xylene (Total) | F20SP001
F20SP014
F20SP023 | 1
13
5 | 42,471 | No
No
No | | Semivolatile Organic Compoun | ds (μg/kg) | | | · · · · · | | Total Naphthalenes | F20SP001
F20SP013
F20SP012
F20SP014
F20SP015
F20SP017
F20SP019
F20SP020
F20SP023
F20SP024
F20SP029
F20SP030
F20SP030 | 390
76
171
41,012
79
604
624
56
660
600
95
89 | 210 | Yes
No
No
No
Yes
No
Yes
Yes
No
No
No | | Naphthalene | F20SP001
F20SP003
F20SP014
F20SP015
F20SP017
F20SP020
F20SP023
F20SP024
F20SP029
F20SP030 | 390
76
4,000
79
260
30
660
600
29 | 210 | Yes No Yes No Yes No Yes No Yes No Yes No No | | 2-Methylnaphthalene | F20SP012
F20SP014
F20SP015
F20SP017
F20SP019
F20SP020
F20SP029
F20SP030
F20SP038 | 171
37,012
121
344
624
26
- 66
46
88 | NI. | N A | Table 2.7 Areas 19 and 20 Summary of DPT Soil Analytical Results Fuel Distribution System | Parameters | Location | Subsurface
Conc. | Groundwater
Protection RBSL | Exceeds Groundwater
Protection RBSL | |------------------------------|----------------------|---------------------|--------------------------------|--| | Semivolatile Organic Compoun | ids (µg/kg) | | | | | Benzo(a)anthracene | F20SP001 | 1,900 | 73,084 | No. | | | F20SP003 | 580 | | No | | | F20SP004 | 60 | | No | | | F20SP005 | 120 | | No | | | F20SP006 | 100 | | No | | | F20SP012 | 190 | | No | | | F20SP014 | 220 | | No | | | F20SP015 | 660 | | No | | | F20SP016 | 1,200 | | No | | | F20SP017 | 3,900 | | No | | | F20SP019 | 220 | | No | | | F20SP020 | 210 | | No | | | F20SP021 | 200 | | No | | | F20SP022 | 160 | | No | | | F20SP023 | 170 | | No | | | F20SP024 | 40 | | No | | | F20SP025 | 120 | | No | | | F20SP027 | 35 | | No | | | F20SP029 | 95 | | No | | | F20SP030 | 200 | | No | | | F20SP035 | 36 | | No | | | F20SP036 | 38 | | No | | | F20SP037 | 50
50 | | No | | | F20SP038 | 280 | | No
si | | | F20SP039 | 64 | | No
No | | | F20SP041 | 82 | | No | | Benzo(b)fluoranthene | F20SP001 | 730 | 29,097 | No | | | F20SP003 | 710 | | No | | | F20SP004 | 60 | | No | | | F20SP005 | 95 | | No | | | F20SP006 | 95 | | No | | | F20SP012 | 48 | | No | | | F20SP014 | 220 | | No | | | F20SP015 | 790 | | No | | | F20SP016 | 1,200 | | No | | | F20SP017 | 3,000 | | No | | | F20SP020 | 100 | | No | | | F20SP021 | 100 | | No
No | | | F20SP022 | 140 | | No
No | | | F20SP023 | 79
46 | | No
No | | | F20SP024 | 46
110 | | No
No | | | F20SP025 | 110
41 | | No
No | | | F20SP027
F20SP029 | 96 | | No
No | | | | | | No
No | | | F20SP030
F20SP038 | 140
210 | | No
No | | | F203F038 | | | INO | | Parameters | Location | Subsurface
Conc. | Groundwater
Protection RBSL | Exceeds Groundwater
Protection RBSL | |------------------------------|-------------|---------------------|--------------------------------|--| | Semivolatile Organic Compour | nds (µg/kg) | | | | | Benzo(k)fluoramhene | F20SP001 | 590 | 231,109 | No | | | F20SP003 | 560 | | No | | | F20SP004 | 43 | | No | | | F20SP005 | 73 | | No | | | F20SP006 | 81 | | No | | | F20SP012 | 57 | | No | | | F20SP014 | 140 | | No | | | F20SP015 | 720 | | No | | | F20SP016 | 920 | | No | | | F20SP017 | 2,800 | | No | | | F20SP020 | 110 | | No | | | F20SP021 | 110 | | No | | | F20SP022 | 140 | | No | | | F20SP023 | 53 | | No | | | F20SP024 | 30 | | No | | | F20SP025 | 120 | | No | | | F20SP027 | 29 | | No | | | F20SP029 | 85 | | No | | | F20SP030 | 170 | | No | | | F20SP038 | 220 | | No | | Chrysene | F20SP001 | 3,200 | 12,998 | No | | | F20SP003 | 1,000 | | No | | | F20SP004 | 64 | | No | | | F20SP005 | 220 | | No | | | F20SP006 | 180 | | No | | | F20SP012 | 250 | | No | | | F20SP013 | 52 | | No | | | F20SP014 | 410 | | No | | | F20SP015 | 740 | | No | | | F20SP016 | 1,200 | | No | | | F20SP017 | 3,700 | | No | | | F20SP019 | 440 | | No | | | F20SP020 | 220 | | No | | | F20SP021 | 260 | | No | | | F20SP022 | 190 | | · No | | | F20SP023 | 310 | | No | | | F20SP024 | 55 | | No | | | F20SP025 | 150 | | No | | | F20SP027 | 45 | | No | | | F20SP029 | 180 | | No | | | F20SP030 | 280 | | No | | | F20SP035 | 44 | | No | | | F20SP036 | 46 | | No | | | F20SP037 | 68 | | No | | | F20SP038 | 350 | | No | | | F20SP039 | 81 | | No | | | F20SP040 | 27 | | No | | | F20SP041 | 89 | | No | | Parameters | Location | Subsurface
Conc. | Groundwater
Protection RBSL | Exceeds Groundwater
Protection RBSL | |------------------------------|--|---|--------------------------------|--| | Semivolatile Organic Compoun | ds (μg/kg) | | | | | Acenaphthene | F20SP038
F20SP041 | 1,400
48 | NL | NA | | Anthracene | F20SP038
F20SP041 | 550
54 | NL | NA | | Benzo(a)pyrene | F20SP035
F20SP036
F20SP037
F20SP038
F20SP039
F20SP040
F20SP041 | 31
44
65
190
74
33
87 | NL | NA | | Benzoic acid | F20SP039 | 400 | NL | NA | | Dibenzofuran | F20SP038 | 630 | NL | NA | | Fluoranthene | F20SP038 | 1,200 | NL | NA | | Fluorene | F20SP038 | 1,100 | NL | NA | | Phenanthrene | F20SP035
F20SP038
F20SP041 | 38
2,300
120 | NL | NA | | Pyrene | F20SP038
F20SP041 | 1,800
230 | NL | NA | #### Notes: NLNot listed. NA Not applicable. μ g/kg = Micrograms per kilogram. RBSLs for groundwater protection from the South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC, January 5, 1998) were used as reference concentrations. Bolded concentrations exceed RBSLS. | Parameters | Location | Concentration | RBSLs | Exceeds RBSI | |--------------------------------|----------------------|---------------|--------|--------------| | Area 19 | | | | | | Volatile Organic Compounds (μg | /L) | | | | | Benzene | F19GP009 | 8 | 5 | Yes | | | F19GP013
F19GP014 | 32
2 | | Yes
No | | | | • | | | | Ethylbenzene | F19GP001 | 1 | 700 | No | | | F19GP012
F19GP013 | 44
40 | | No
No | | | 11701013 | 70 | | NO | | Xylene (Total) | F19GP012 | 2 | 10,000 | No | | | F19GP013 | 13 | | No | | | F19GP015 | 2 | | No | | Semivolatile Organic Compounds | (μg/L) | | | _ | | Total PAHs | F19GP004 | 2.8 | 25 | No | | | F19GP009 | 46 | | Yes | | | F19GP010 | 2.4 | | No | | | F19GP011 | 7.8 | | No | | | F19GP012 | 354,216 | | Yes | | | F19GP013 | 305 | | Yes | | | F19GP014 | 133 | | Yes | | | F19GP015 | 1,551 | | Yes | | | F19GP016 | 161 | | Yes | | | F19GP017 | 7 | | No | | | F19GP018 | 41 | | Yes | | | F19GP019 | 22 | | No | | | F19GP020 | 464 | | Yes | | 2-Methylnaphthalene | F19GP009 | 43.6 | 10 | Yes | | | F19GP010 | 1.58 | | No | | | F19GP011 | 4.84 | | No | | | F19GP012 | 260,816 | | Yes | | | F19GP013 | 190 | | Yes | | | F19GP014 | 130 | | Yes | | | F19GP015 | 1,300 | | Yes | | | F19GP016 | 140 | | Yes | | | F19GP017 | 7 | | No | | | F19GP018 | 5 | | No | | | F19GP019 | 10 | | Yes | | | F19GP020 | 15 | | Yes | Table 2.8 Areas 19 and 20 Summary of DPT Groundwater Analytical Results Fuel Distribution System | Parameters | Location | Concentration | RBSLs | Exceeds RBSL | |-------------------------------|--|---------------------------------|-------|--| | Semivolatile Organic Compound | s (μg/L) | | | | | Naphthalene | F19GP009
F19GP010
F19GP011 | 2
0.8
3 | 10 | No
No
No | | | F19GP012
F19GP013
F19GP015
 91,000
100
240 | | Yes
Yes
Yes | | | F19GP016
F19GP018
F19GP019 | 18
16
12 | | Yes
Yes
Yes | | | F19GP020 | 440 | | Yes | | 2,4-Dimethylphenol | F19GP020 | 12 | NL | NA | | Benzo(a)anthracene | F19GP013
F19GP014
F19GP016
F19GP018
F19GP020 | 5
1
0.8
5
2 | 10 | No
No
No
No
No | | Benzo(a)pyrene | F19GP013
F19GP014
F19GP018 | 2
0.6
3 | NL | NA | | Benzo(b)fluotanthene | F19GP004
F19GP013
F19GP016
F19GP018
F19GP020 | 0.8
2
0.7
2
2 | 10 | No
No
No
No
No | | Benzo(k)fluoranthene | F19GP004
F19GP018
F19GP020 | 1
3
2 | 10 | No
No
No | | Benzo(g,b;i)perylene | F19GP013 | 0.8 | NL | NA | | Chrysene | F19GP004
F19GP012
F19GP013
F19GP014
F19GP015
F19GP016
F19GP018 | 1
2,400
8
2
11
1 | 10 | No
Yes
No
No
Yes
No
No | | | F19GP020 | 3 | 22 | No | | Acenaphthene | F19GP013
F19GP014
F19GP018
F19GP019
F19GP020 | 24
8
42
15
32 | NL. | NA | | Parameters | Location | Concentration | RBSLs | Exceeds RBSL | |--------------------------------|--|---|-------|--------------| | Semivolatile Organic Compounds | (μg/L) | | | | | Anthracene | F19GP018
F19GP019
F19GP020 | 3
L
10 | NL | NA | | Dibenzofuran | F19GP013
F19GP014
F19GP015
F19GP018
F19GP019
F19GP020 | 22
8
42
17
5 | NL | NA | | Fluoranthene | F19GP013
F19GP014
F19GP018
F19GP019
F19GP020 | 5
2
22
22
1
6 | NL | NA | | Fluorene | F19GP013
F19GP014
F19GP015
F19GP016
F19GP017
F19GP018
F19GP019
F19GP020 | 40
16
130
20
2
24
7 | NL | NA | | Phenanthrene | F19GP013
F19GP014
F19GP015
F19GP016
F19GP017
F19GP018
F19GP019
F19GP020 | 73
28
240
26
2
48
6
20 | NL | NA. | | Phenol | F19GP013 | 1 | NL | NA | | Рутепе | F19GP013
F19GP014
F19GP016
F19GP018
F19GP020 | 9
3
3
17
6 | NE | NA | | Bis(2-ethylhexyl)phthalate | F19GP013
F19GP014
F19GP016
F19GP017
F19GP018
F19GP020 | 3
5
1
2
0.70
1
2 | NL | NA | | Parameters | Location | Concentration | RBSLs | Exceeds RBSL | |--------------------------------|--|--|--------|--| | Area 20 | | | | | | Volatile Organic Compound (µg/ | L) | WAR III | | | | Acetone | F20GP036
F20GP045 | 28
8 | NL | NA NA | | Benzene | F20GP005 | 2 | 5 | No | | Ethythenzene | F20GP005
F20GP008 | 5
5 | 700 | No
No | | Toluene | F20GP005 | 4 | 1,000 | No | | Xylene (Total) | F20GP005
F20GP008
F20GP024 | 21
10
4 | 19,000 | No
No
No | | Semivolatile Organic Compound | s (µg/L) | | | | | Total PARIs | F20GP001
F20GP002
F20GP003
F20GP004
F20GP005
F20GP008
F20GP018
F20GP022
F20GP024
F20GP025
F20GP031
F20GP037
F20GP043
F20GP044 | 14
1
19
17
53
8
1,438
7
3
144
44
16
27
577 | 25 | No No No No Yes No Yes No Yes No Yes Yes Yes Yes Yes Yes Yes Yes | | 2-Methylnaphthalene | F20GP001
F20GP003
F20GP004
F20GP005
F20GP006
F20GP008
F20GP018
F20GP019
F20GP020
F20GP022
F20GP024
F20GP037
F20GP043
F20GP044 | 13
9.6
10.9
32.6
3
507
0.53
4
6
2
127
27
577
33 | 10 | Yes No Yes Yes No Yes No No No Yes Yes Yes Yes | Table 2.8 Areas 19 and 20 Summary of DPT Groundwater Analytical Results Fuel Distribution System | Parameters | Location | Concentration | RBSLs | Exceeds RBSL | |--------------------------------|--|---|-------|---| | Semivolatile Organic Compounds | : (μ g/L) | | | | | Naphthalene | F20GP001
F20GP002
F20GP003
F20GP004
F20GP006
F20GP008
F20GP018
F20GP022
F20GP024
F20GP037
F20GP043
F20GP044 | 1
1
3
6
16
5
786
0.60
1
9
19
34
6 | 10 | No
No
No
No
Yes
No
No
No
Yes
Yes | | Benzo(a)anthracene | F20GP003
F20GP005
F20GP008
F20GP018
F20GP024
F20GP025
F20GP031
F20GP037
F20GP043 | 2
1
55
2
2
15
4
1 | 10 | No
No
Yes
No
No
Yes
No
No
Yes | | Benzo(a)pyrene | F20GP031
F20GP043 | 4
6 | NL | NA
NA | | Benzo(b)fluoranthene | F20GP003
F20GP005
F20GP008
F20GP018
F20GP024
F20GP025
F20GP031
F20GP043 | 2
1
26
1
1
10
4
5 | 10 | No
No
Yes
No
No
No
No
No | | Benzo(k)fluoranthene | F20GP008
F20GP018
F20GP024
F20GP025
F20GP031
F20GP043 | 20
0.50
0.90
6
3
6 | 10 | Yes
No
No
No
No
No | | Benzo(g,h,i)perylene | F20GP031
F20GP043 | 3
2 | NL | NA | | Benzoic acid | P20GP031
P20GP032
P20GP036 +
P20GP045 | 2
1
7
7 | NL. | NA | | Parameters | Location | Concentration | RBSLs | Exceeds RBSL | |--------------------------------|--|--|-------|---| | Semivolatile Organic Compound: | s (μg/L) | | | | | Chrysene | F20GP003
F20GP005
F20GP008
F20GP018
F20GP024
F20GP025
F20GP031
F20GP037
F20GP043 | 2
2
50
2
4
13
5
2 | 10 | No
No
Yes
No
No
Yes
No
No
Yes | | Acenaphthene | F20GP037 | 29 | NL | NA | | Anthracene | F20GP031
F20GP037
F20GP043 | 2
6
21 | NL | NA NA | | Dibenzofuran | F20GP037 | 11 | NL | NA | | Fluoranthene | F20GP031
F20GP037
F20GP043 | ti
12
29 | NL | NA | | Fluorene | F20GP031
F20GP037
F20GP043 | 0.80
18
44 | NL | NA | | Indeno(1,2,3-ed)pyrene | F20GP031
F20GP043 | 2
2 | NL | NA | | Phenanthrene | F20GP031
F20GP037
F20GP043 | 5
28
170 | NL | NA | | Phenol | F20GP032 | 0.60 | NL | NA | | Pyrene | F20GP031
F20GP037
F20GP043 | 10
8
24 | NL . | NA | | Big(2-ethylbexyl)phthalate | F20GP031
F20GP032 | 2
2 | NL | NA | | Die t hylphthalate | F20GP031
F20GP032 | 0.70
0.60 | NL | NA | | Di-n-bury!phthalate | F20GP031
F20GP032 | 1
0.50 | NL | NA | Notes: NL Notes: NL = Not listed. NA = Not applicable. µg/L = Micrograms per liter. RBSLs from the South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC, January 5, 1998) were used as reference concentrations. Bolded concentrations exceed RBSL. # Table 2.9 Areas 19 and 20 Summary of Monitoring Well Analytical Results Fuel Distribution System | Parameters | Location | Concentration | RBSL | Shallow
Background | Exceed
RBSL | |----------------------------|--|--|-------|-----------------------|--| | Area 19 | | | | | | | Semivolatile Organic Compo | unds (μg/L) | | | | | | Benzeic acid | FDS19A
FDS19B
FDS19C
FDS19D
FDS19E
FDS19G | 9
19
6
6
6
6
8 | NL | NA NA | NA. | | bis(2-Ethylhexyl)phthalate | FDS19B | 41 | NL | NA | NA | | Butythenzylphthalate | FDS19B | 1 | NL | NA | NA | | Di-n-butylphthalate | FDS19A
FDS19B
FDS19C
FDS19E
FDS19F | 1
1
1
1 | NL | NA | NA | | Inorganics (µg/L) | () J = | · · · · · · | | | | | Arsenic (As) | FDS19A
FDS19B
FDS19C
FDS19D
FDS19E
FDS19F
FDS19F | 13.2
8.2
4.1
17
3.3
20.6
5.2 | 50 | 17.8 | No
No
No
No
No
No | | Barium (Ba) | FDS19A
FDS19B
FDS19C
FDS19D
FDS19E
FDS19F
FDS19G | 293
217
46.7
42.7
46.2
81.8
32.6 | 2,000 | 31 | No
No
No
No
No
No | | Chromium (Cr) | FDS19A
FDS19B
FDS19C
FDS19D
FDS19E
FDS19F
FDS19G | 0.73
1.9
2.7
.1
1.5
3.1
6.7 | 100 | 3.88 | No
No
No
No
No
No
No | | Lead (Pb) | FDS19C
FDS19F | 4.9
3.2 | 15 | 4.6 | No
No | # Table 2.9 Areas 19 and 20 Summary of Monitoring Well Analytical Results Fuel Distribution System | Parameters | Location Conc | | oncentration RBSL | | Exceed
RBSL | | |----------------------------|--|-------------------------|-------------------|------|----------------|--| | Area 20 | | | | | | | | Semivolatile Organic Compo | unds (µg/L) | | | | | | | Total PAHs | FDS20A
FDS20C | 3
3 | 25 | NA | No
No | | | 2-Methylnaphthalene | FDS20A
FDS20C | 3
2 | 10 | NA | No
No | | | Naphthalene | FDS20C | i | 10 | NA | No | | | 4-Chloro-3-methylphenol | FDS20A | 1 | NL | NA | NA | | | 4-Methylphenol | FDS20B
FDS20C
FDS20E | i
1
8 | NL | NA | NA | | | 4-Nitrophenol | FDS20C | 1 | NL | NA | NA | | | Acenaphthene | FD\$20A
FD\$20C
FD\$20E
FD\$20F | 2
5
1
2 | NL | NA | NA | | | Anthracene | FDS20A
FDS20C | 1
1 | NL | NA | NA | | | Benzoic acid | FDS20A
FDS20B
FDS20C
FDS20D
FDS20E | 1.5
2
1
1
4 | NL. | NA T | NA . | | | Dibenzofuran | FDS20C | 2 | NL | NA | NA | | | Diethylphthalate | FDS20A | ı | NL | NA | NA | | | Di-n-butylphthalate | FDS20A
FDS20B
FDS20C
FDS20D | 1
1
0.6
1 | NL | NA | NA | | | Fluoranthene | FDS20C | 1 | NL | NA | NA | | | Fluorene | FDS20C
FDS20F |
4
1 | NL | NA | NA | | | Pentachlorophenol | FDS20C | 1 | NL | NA | NA | | ### Table 2.9 Areas 19 and 20 Summary of Monitoring Well Analytical Results Fuel Distribution System | Parameters | Location | Concentration | RBSL | Shallow
Background | Exceed
RBSL | |---|------------------|---------------|-------|-----------------------|----------------| | Semivolatile Organic Com | pounds (μg/L) | | | | | | Phenarahrene | FDS20A
FDS20B | i i | NL | NA | NA | | | FDS20C
FDS20E | 7 2 | | | | | Phenol | FDS20A | 1 | NL | NA | NA | | Pyrene | FDS20A
FDS20C | 1 | NL | NA | NA. | | Inorganics (μg/L) | 1 Dathe | | | | | | Arsenic (As) | FDS20A | 5.5 | 50 | 17.8 | No | | Arsenic (As) | FDS20B
FDS20C | 11.3 | 114 | | No
No | | | FDS20D
FDS20E | 3.7
15.8 | | | No
No | | Barium (Ba) | FDS20A | 94,55 | 2,000 | 31 | No | | (, | FDS20B | 142 | | | No
No | | | FDS20C
FDS20D | 428
79.3 | | | No
No | | | FDS20E | 146 | | | No | | *************************************** | FDS20F | 45.4 | | : | No | | Cadmium (Cd) | FDS20C | 1.2 | 5 | 0.53 | No | | | FDS20D | 0.36 | | | No | | | FDS20E | 0.89 | | | No | | Chromium (Cr) | FDS20A | 1.15 | 100 | 3.88 | No | | | FDS20B | 2 | | | No | | | FDS20C | 3.9 | | | No
No | | | FDS20D
FDS20E | 2.6
2.4 | | | No
No | | | FDS20E | 0.56 | | | No | | Lead (Pb) | FDS20B | 2.2 | 15 | 15,4 | No | | | FDS20C | 3.1 | | | No | ### Notes: $\begin{array}{rcl} NL & = & Not \ listed \\ NA & = & Not \ applicable \\ \mu g/L & = & Micrograms \ per \ liter \end{array}$ RBSLs from the South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC, January 5, 1998) were used as reference concentrations. Bolded concentrations exceed RBSL. Table 3.1 DPT Soil and Groundwater Samples and Analyses HFF | Sample
Location | Sample
Identifier | Medium | Date
Collected | Analyses | Purpose | |--------------------|---|--|--------------------------|--------------|--| | SP001
GP001 | HFFSP00101
HFFSP00102
HFFGP00101 | Surface Soil
Subsurface Soil
Groundwater | 9/29/00
10/02/00 | Vocs, svocs | Delineate/confirm petroleum
contamination estimated by
ESE/KEMRON near tank 3916 and
identify potential associated RCRA
concerns | | SP002 | HFFSP00201
HFFSP00202 | Surface Soil
Subsurface Soil | 9/29/00 | VOCs, SVOCs | Delineate/confirm petroleum contamination estimated by ESE/KEMRON near tank 3916 and identify potential associated RCRA concerns. | | SP003 | HFFSP00301
HFFSP00302 | Surface Soil
Subsurface Soil | 1/21/99
4/12/99 | VOCs, SVOCs | Defineate/confirm petroleum
contamination estimated by
ESE/KEMRON near tank 3916 and
identify potential associated RCRA
concerns | | SP004
GP004 | HFFSP00401
HFFSP00402
HFFGP00401 _*
HFFHP00401 | Surface Soil
Subsurface Soil
Groundwater | 9/29/00
"
10/01/00 | VOCs, SVOCs | Screen for/confirm petroleum contamination and identify potential RCRA concerns associated with tank 3900E. | | SP005 | HFFSP00501
HFFSP00502 | Surface Soil
Subsurface Soil | 9/29/00 | VOCs, \$VOCs | Screen for/confirm petroleum
contamination and identify potential
RCPA concerns associated with tank
3900E | | SP006 | HFFSP00601 _*
HFFSP00602 _*
HFFCP00602 _* | Surface Soil Subsurface Soil | 9/28/00 | VOCs, SVOCs | Screen for petroleum contamination and identify potential RCRA concert associated with tank 3900F. | | GP006
SP007 | HFFSP00701
HFFSP00702 | Groundwater Surface Suil Subsurface Soil | 10/01/00
9/29/00 | VOCs, SVOCs | Screen for petroleum contamination and identify potential RCRA concert associated with tank 3900F | | SP008 | HFFSP00801
HFFSP00802 | Surface Soil
Subsurface Soil | 9/28/00 | VOCs, SVOCs | Delineate/confirm petroleum contamination estimated by ESE/KEMRON near tank 3917 and identify potential associated RCRA concerns. | | SP009 | HFFSP00901
HFFSP00902 | Surface Soil
Subsurface Soil | 9/28/00 | VOCs, SVOCs | Delineare/confirm petroleum
contamination estimated by
ESE/KEMRON near tank 3917 and
identify potential associated RCRA
concerns | Table 3.1 DPT Soil and Groundwater Samples and Analyses HFF | Sample
Location | Sample
Identifier | Medium | Date
Collected | Analyses | Purpose | |--------------------|--|--|-------------------|-------------|---| | SP010
GP010 | HFFSP01001
HFFSP01002
HFPGP01001 | Surface Soil
Subsurface Soil
Groundwater | 9/28/00 | VOCs, SVOCs | Delineate/confirm petroleum
confamination estimated by
ESE/KEMRON near tank 3917 and
identify potential associated RCRA
concerns. | | SP011 | HFFSP01101
HFFSP01102 | Surface Soil
Subsurface Soil | 11/15/00 | VOCs, SVOCs | Delineate soil contamination associated with sample HFFSP00802. | | GP011 | HFFGP01101 | Ground water | 10/01/00 | VOCs, SVOCs | Identify potential patroleum/RCRA
groundwater contamination south of
ESE/KEMRON area. | | SP012 | HFFSP01201
HFFSP01202 | Surface Soil
Subsurface Soil | 11/15/00 | VOCs, SVOCs | Delineate soil contamination associated with sample HFFSP00802. | | GP012 | HFFGP01201 | Groundwater | 10/02/00 | VOCs, SVOCs | Identify potential petroleum/RCRA
groundwater contamination northwest
of tank 3900E. | | SP013 | HFFSP01301
HFFSP01302 | Surface Soil
Subsurface Soil | 11/15/00 | VOCs, SVOCs | Delineate soil contamination associated with sample HFFSP00802. | | GP013 | HFFGP01301 | Groundwater | 10/01/00 | VOCs, SVOCs | Identify potential petroleum/RCRA groundwater contamination southwest of tank 3900F. | | SP014 | HFFSP01401
HFFSP01402 | Surface Soil
Subsurface Soil | 11/15/00 | VOCs, SVOCs | Delineate soil contamination associated with sample HFFSP00802. | #### Notes: Semivolatile Organic Compounds Volatile Organic Compounds Duplicate sample SVOCs VOCs Table 3.2 Summary of DPT Soil Analytical Results HFF | Parameters | Location | Surface
Conc. | Subsurface
Conc. | Dermal
Protection
RBSL | GW
Protection
RBSL | RBC | SSL | |------------------------------|--|--|--|------------------------------|--------------------------|--------|--------| | Volatile Organic Compoun | ıds (µg/kg) | | | | | | | | Acetone | HIPSPOOP
HIPSPOOP
HIPSPOOP
HIPSPOOP
HIPSPOOP
HIPSPOOP | 2700Đ
92
15
NĐ
13
ND | ND
ND
ND
5
6 | NL | NE. | 780000 | 57(h) | | Chlorobenzene | HFFSP008 | ND | 10 | NL | NL | NA | 1900 | | Ethylbenzene* | HFFSP002 | ND | 2) | 780000 | 1260 | NA | 21000 | | Methylene Chloride | HFFSP001
HFFSP005
HFFSP006 | 4J
ND
9 | ND
4J
ND | NL | NL | 85000 | 12 | | Semivolatile Organic Com | pounds (µg/kg) | | | | | | | | Total Naphthalenes* | HFFSP006
HFFSP008 | 1915 ^b
ND | ND
7200 ⁶ | 310000 | 210 | NL | NL | | 2-
Methylnaphthai
ene* | HFFSP006
HFFSP008 | 810J
ND | ND
3000D | NL | NL | 160000 | 73000 | | Naphthalene* | HFFSP006
HFFSP008 | 1105 ^b
ND | ND
4200Đ ^b | 3100000 | 210 | 160000 | 120000 | | Benzo(a)anthracene* | HFFSP002
HFFSP003
HFFSP004
HFFSP005
HFFSP006
HFFSP007
HFFSP008 | ND
ND
13000 ^a
830
15450 ^a
2100D ^a
26J | 75J
78J
31J
ND
ND
ND
ND
9500D | 880 | 73,084 | 870 | 3900 | | Renzo(b)fluoranthene* | HFFSP004
HFFSP005
HFFSP006
HFFSP007
HFFSP008 | 12000°
660
17330°
1400°
ND | ND
ND
ND
ND
L1000D | 880 | 29,097 | 870 | 12000 | | Benzo(k)fluoranthene* | HFFSP004
HFFSP005
HFFSP006
HFFSP007 | 8700°
740
8770°
1700D° | ND
ND
ND
ND | 880 | 231,109 | 8700 | 120000 | Table 3.2 Summary of DPT Soil Analytical Results HFF | Parameters | Location | Surface
Conc. | Subsurface
Conc. | Dermal
Protection
RBSL | GW
Protection
RBSL | RBC | SSL |
--|----------------------|--|---------------------|------------------------------|--------------------------|--------|---------| | Semivolatile Organic Com | | Conc. | Conc. | KDSL | KDSL | KBC | SSL | | Chrysene* | HFFSP002 | ND | 130) | 880 | 12,998 | 87000 | 1703030 | | Cmysene. | HFFSP003 | ND | 893 | 000 | 14,990 | 0/100 | 1390000 | | | HFFSP004 | 13000 ^h | 33J | | | | | | | HFFSP005 | 850 | ND | | | | | | | HFFSP006 | 13930" | ND | | | | | | | HPFSP007 | 2100D* | ND | | | | | | | HFFSP008 | 28J | 8500D | | | | | | | HPTSP009 | NĐ | 453 | | | | | | Dibenz(a,h)anthracene* | HFFSP004 | 1200J ^a | ND | 88 | 87886 | 87 | 3700 | | | HFFSP006 | 1200° | ND | | | | | | | HFFSP007 | 210J ^a | ND | | | | | | | HFFSP008 | ND | 1400 | | | | | | Acenaphthene | HFFSP002 | ND | 66J | NL | NL | 47000 | 1300000 | |) to the property | HFFSP004 | 1500 | ND | | 142 | 7.00 | TUGGAGG | | | HFFSP005 | 623 | ND | | | | | | | HFFSP006 | 3860 | ND | | | | | | | HFFSP007 | 280J | ND | | | | | | | HFFSP008 | ND | 8800D | | | | | | Acenaphthylene | HFFSP006 | 300J | ND | NL | NL | 160000 | 190000 | | , recompliant tone | HFFSP008 | ND | 290J | .,_ | 212 | 100000 | 1,0000 | | | | | 2442 | | | | | | Anthracene | HFFSP004 | 4500 | ND
ND | NL | NL | 230000 | 2.6E+07 | | | HFFSP005
HFFSP006 | 260J
810 | ND
ND | | | | | | | HFF5P007 | 99010 | ND | | | | | | | HFFSP008 | ND | 6300D | | | | | | D / .) | HEEGDAAA | ************************************** | 601 | **T | *11 | | +7000 | | Benzo(a)pyrene | HFFSP002
HFFSP003 | ND
ND | 62J
78J | NL | NL | 87 | 17000 | | | HFFSP004 | 11000 | ND | | | | | | | HFFSP005 | 770 | ND | | | | | | | HFFSP006 | 10850 | ND | | | | | | | HFFSP007 | 1600 | ND | | | - | | | | HFFSP008 | ND | 7400D | | | | | | | HFFSP013 | ND | 110J | | | | | | Henzo(g,h,i)perylene | HFFSP004 | 3800J | ND | NL | NL | 160000 | 2.3E+07 | | | HFFSP005 | 300J | ND | a 76.50 | * · * | | | | | HFFSP006 | 4720 | ND | | | | | | | HFFSP007 | 780 | ND | | | | | | | HFFSP008 | ND | 4000D | | | | | | Benzoic acid | HFFSP004 | ND | 420) | NL | NL | 310000 | 230000 | | 2011LOIV GUIG | HFFSP006 | 260J | 260J | 1,1 | 1111 | 310000 | 230000 | | | HFFSP009 | ND | - 410J | | | | | | Control of the Contro | | a de la compansión l | | | | | | | bis(2-Ethylhexyl)phthalate | HFFSP006 | 180J | ND | NL | NL | 46000 | 740000 | November 2000 Table 3.2 Summary of DPT Soil Analytical Results HFF | Parameters | Location | Surface
Conc. | Subsurface
Conc. | Dermal
Protection
RBSL | GW
Protection
RBSL | RBC | SSL | |--------------------------|--|---|--|------------------------------|--------------------------|--------|---------| | Semivolatile Organic Con | npounds (μg/kg) | | | | | | | | Dibenzofuran | HFFSP006
HFFSP007
HFFSP008 | 2690
1401
ND | ND
ND
S000D | NL | NI. | 31000 | 27000 | | Di-n-butylphthalate | HFFSP011
HFFSP014 | 340J
ND | ND
110J | NL | NL | 780000 | 1.0E+07 | | Fluoranthene | HFFSP004
HFFSP005
HFFSP007
HFFSP008 | 27000
1500
36550
4000D
ND | ND
ND
ND
ND
24000D | NL | NL | 310000 | 1.3E+07 | | Fluorene | HFFSP004
HFFSP005
HFFSP006
HFFSP007
HFFSP008 | 1700J
70J
5255
360J
ND | ND
ND
ND
ND
8400D | NL | NL | 310000 | 1700000 | | Indeno(1,2,3-ed)pyrene | HFFSP004
HFFSP005
HFFSP006
HFFSP007
HFFSP008 | 4800
360
4855
900
ND | ND
ND
ND
ND
ND | NL | NL | 870 | 34000 | | Phenanthrene | HFFSP003
HFFSP004
HFFSP005
HFFSP006
HFFSP007
HFFSP008 | ND
14000
670
34050
3000D
70J | 47J
ND
ND
ND
ND
31000D | NL | NL | 230000 | 2700000 | | Pyrene | HFFSP002
HFFSP004
HFFSP005
HFFSP006
HFFSP007
HFFSP008 | ND
20000
1600
25200
4200D
ND | 1100
ND
ND
ND
ND
ND
22000D | NL | NL | 230000 | 940000 | ### Notes: NL = Not listed NA = Not applicable $\mu g/kg = Micrograms per kilogram$ RBSLs for groundwater protection from the South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC, January 5, 1998) were used as reference concentrations. Bolded concentrations exceed RBSLS (a = exceeds dermal protection RBSL; b = exceeds groundwater protection RBSL). *Denotes regulated fuel constituent. #### Table 3.3 Summary of DPT Groundwater Analytical Results HFF | Parameters | Location | Concentration | RBSL (μg/L) | Tap Water
RBC (μg/L) | MCL (μg/L) | |----------------------------|----------------------|---------------|-------------|-------------------------|------------| | Volatile Organic Compound | (μg/L) | | | | | | 1,2-Dichloroethene (total) | HFFGP010 | 21 | NL | 5.5 | 5 | | Methylene Chloride | HFFGP001
HFFGP011 | 3J
3J | NL | 4.1 | 5 | | Semivolatile Organic Compo | unds (μg/L) | | | | | | Benzoic acid | HFFGP012 | 11 | NL. | 15000 | NL | | Semivolatile Organic Compo | unds (μg/L) | | - | | | | Bis(2-ethylhexyl)phthalate | HFFGP006
HFFGP013 | 61
61 | NL | 4,8 | 6 | #### Notes: NL = Not listed. RBSL = Risk-based Screening Level from the South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC, January 5, 1008) ### Tap water RBC = USEPA Region III Tap Water Risk-Based Concentration (THQ=0.1). MCL = USEPA Maximum Contaminant Level. μ g/L = Micrograms per liter.